Long-term Study of Changes in the Orbital Periods of 18 Eclipsing SW Sextantis Stars

David Boyd

West Challow Observatory, OX12 9TX, UK; davidboyd@orion.me.uk

Received April 8, 2023; revised May 18, 2023; accepted May 19, 2023

Abstract SW Sex stars are an informal sub-class of eclipsing nova-like cataclysmic variables. We report 934 new eclipse times measured over the past 17 years for HS 0728+6738 (V482 Cam), SW Sex, DW UMa, HS 0129+2933 (TT Tri), V1315 Aql, PX And, HS 0455+8315, HS 0220+0603, BP Lyn, BH Lyn, LX Ser, UU Aqr, V1776 Cyg, RW Tri, 1RXS J064434.5+334451, AC Cnc, V363 Aur, and BT Mon. When combined with published eclipse times going back in some cases many decades, we show that these binary systems exhibit a range of behaviors, including increasing, decreasing, and possibly oscillating orbital periods. Nevertheless, the duration of these observations is still not long enough to be able to make reliable quantitative statements about their long term behaviors. In addition to these long term trends, we also observed rapid and unusual decreases in the orbital periods of SW Sex and RW Tri during 2017 and 2018, respectively.

1. The SW Sex phenomenon

Nova-like variables are a sub-category of cataclysmic variables (CVs) in which the transfer of hydrogen-rich material from the main sequence secondary star to the white dwarf primary via Roche lobe overflow is sustained at a high rate. This maintains the accretion disc around the primary in a bright state and inhibits the disc instability mechanism responsible for dwarf nova outbursts. The majority of nova-like variables have binary orbital periods longer than 3 hours, which places them above the period gap and in the regime where magnetic braking progressively shrinks the binary orbit and drives mass transfer. Further information on CVs can be found in Patterson (1984), Warner (1995), and Hellier (2001).

The name SW Sex stars was first introduced in Thorstensen et al. (1991) to characterise a range of observational properties shared by a number of eclipsing nova-like variables which displayed complex and unusual spectral variation with orbital phase. Prototypes of this informal sub-class were SW Sex, DW UMa, PX And, and V1315 Aql. Honeycutt et al. (1986) first noticed that SW Sex (known at the time as PG 1012-029) showed deep eclipses in its continuum but hardly at all in its emission lines, suggesting the presence of a bipolar wind emanating from the accretion disk. Several more so-called SW Sex stars were first identified as variables in the Hamburg Quasar Survey (Hagen et al. 1995). The observational characteristics of SW Sex stars are described in Hoard et al. (2003). Although initially quite narrow, the definition of SW Sex stars now encompasses most nova-like CVs above the period gap with high mass transfer rates. For a review of our knowledge of the SW Sex phenomenon see Schmidtobreick (2015) and references therein.

SW Sex stars with high orbital inclinations experience deep eclipses which provide a means to measure and monitor their orbital periods. Two motivations for this study, which began in 2006, were to produce accurate eclipse ephemerides for predicting future eclipse times and to investigate if any of the stars deviated from the linear ephemeris expected for a constant orbital period. Several of these stars had not been observed systematically for many years and by combining published data on eclipse times going back in some cases over many decades with new eclipse measurements, their ephemerides could be updated and the stability of their orbital periods investigated.

We chose 18 SW Sex stars which are deeply eclipsing, observable from the UK, and bright enough to yield accurate eclipse times with amateur-sized telescopes. These are listed in Table 1 with their mean orbital periods and the time span of available observations including new results reported here. All have orbital periods above the period gap. One member of the group, BT Mon, experienced a nova outburst in 1939 and a nova shell has since been observed (Duerbeck 1987). Nova shells have also been imaged around V1315 Aql (Sahman *et al.* 2015) and AC Cnc (Shara *et al.* 2012), evidence of nova eruptions several hundred years ago. AC Cnc and BT Mon have two of the longest orbital periods in the group.

An initial report covering the period 2006 to 2012 was published in the *Journal of the AAVSO* (Boyd 2012), hereafter referred to as Paper 1. Here we report on a continuation of this study to 2023 and present results which now cover a 17-year period.

2. Measuring new eclipse times

Predicted times of primary eclipses were obtained from the ephemerides in Paper 1 and a time-series of images of the field of each star obtained starting well before and ending well after these predicted eclipse times to allow for possible variation in orbital period. All images were made unfiltered to maximize photon statistics with either a 0.25-m or 0.35-m Schmidt-Cassegrain Telescope (SCT) and an SXV-H9 (later SXVR-H9) CCD camera located at West Challow Observatory near Oxford, UK. Image scales with these telescopes were 1.45 and 1.21 arcsec/pixel, respectively. Images were dark subtracted and flat fielded and a magnitude for the star was measured in each image using differential aperture photometry with respect to an ensemble of between three and five nearby comparison stars. Comparison star V band magnitudes with errors were obtained from AAVSO charts or from catalogues available at the start of the study. The same comparison star magnitudes and analysis procedures have been used for each star throughout

Boyd, JAAVSO Volume 51, 2023

the study to maintain consistency. A list of comparison stars used for each variable is given in Table 2. If we were starting the project today, we would choose comparison stars from the AAVSO Photometric All-Sky Survey (Henden *et al.* 2018). The photometry error for each star was calculated using the CCD Equation (Howell 2006). For each comparison star this error was then added in quadrature with the comparison chart magnitude error and a weighted mean magnitude zero point and error was computed for the image. This was then used to compute the magnitude and error of the variable star for that image.

A quadratic polynomial was fitted to the lower section of each eclipse in order to find the time of minimum which was expressed as a Heliocentric Julian Date (HJD). An associated analytical error in the time of minimum was derived from uncertainties in the magnitude measurements. The section of the eclipse used for the polynomial fit was normally between the points of maximum slope of the eclipse ingress and egress. Figure 1 shows examples of eclipse profiles. Uncertainties in individual magnitude measurements are generally smaller than the plotted mark. Some eclipses have rounded minima, some are V-shaped, while others exhibit random fluctuations in light output throughout the eclipse, indicating that the source of these fluctuations has not been eclipsed. Irregular eclipse profiles are more difficult to measure and this can lead to larger uncertainties in measured times of minimum. In what follows we will refer to these uncertainties as errors.

It was generally found that analytical errors from the quadratic fits underestimated the real uncertainty in eclipse times. The scatter in eclipse times for each star over a short interval during which the eclipse times were likely to have varied linearly was examined and the analytical errors scaled to make them consistent with the observed scatter about the linear trend. For stars with the smoothest eclipses, a scaling factor of 3 gave errors consistent with the largest fluctuations a factor of 7 was required. This scaling factor was generally found to be consistent for each star throughout the study.

A total of 898 new eclipse times for the 18 stars in this study have been observed and measured by the author. The number of new eclipse times for each star are listed in Table 1. Based on the ephemerides in Paper 1, cycle numbers were assigned to each new eclipse. Measured eclipse times with errors and corresponding cycle numbers for each of the 18 stars are listed in Tables 3.1 to 3.18. For completeness we also include here the eclipse times given in Paper 1. A further 36 eclipse times for LX Ser were measured by the author from observations of LX Ser by Cook and Dvorak in the AAVSO International Database (Kafka 2021). These are listed in Table 4.

3. Published eclipse times

Altogether 1338 eclipse times for these 18 stars were found in more than 40 published papers and in many issues of *Information Bulletin on Variable Stars* (IBVS), *Bulletin of the Variable Star Observers League in Japan* (BVSOLJ), and *Open European Journal on Variable Stars* (OEJV). The numbers of published eclipse times for each star are listed in Table 1 and the sources of published eclipse times are given in Table 5. We have not included these already published times here for reasons of space. All times of minimum were expressed in HJD for consistency, including some times originally reported in Barycentric Julian Date (BJD). In several cases errors for these eclipse times were not specified in the literature or the errors given were clearly unrealistically small given the observed spread in eclipse times. In these cases we needed to make a realistic estimate of the error in these eclipse times so they could be included in our analysis with appropriate weights. Each such data set was considered separately and the root-mean-square (rms) residual of all the times in that set calculated with respect to a locally fitted linear ephemeris. This value was then assigned as an error to all the eclipse times in that set.

We found that eclipse times derived from photographic plates generally had a large scatter compared to electronically measured times and in practice did not provide a constraint on fitting an ephemeris, so we decided not to include these in this analysis. Eclipse times for RW Tri in Smak (1995) appeared very discrepant with other times reported around the same period and therefore have not been included in this analysis.

4. O–C analysis

Each observed eclipse time of minimum was given a weight equal to the inverse square of its assigned error. A weighted linear fit of all available eclipse times vs cycle numbers was calculated for each star. This linear ephemeris was used to produce a calculated time for each eclipse. The linear term in the ephemeris is the mean binary orbital period of the star over the time interval spanned by the observations. Observed minus calculated (O–C) times for each eclipse were then plotted vs cycle number to produce an O–C diagram for each star.

An apparently linear trend in an O–C diagram is consistent with a constant orbital period, while O–C trajectories curving upward indicate the orbital period is increasing and curving downward that the orbital period is decreasing. In most cases we also calculated a weighted quadratic fit to the O–C values. This quadratic ephemeris gave a mean rate of change of orbital period. In some cases, there was a suggestion of sinusoidal variation relative to a linear ephemeris or quadratic ephemeris. In these cases, a weighted sinusoidal fit was calculated with respect to the linear or quadratic ephemeris.

Table 6 gives weighted linear ephemerides for each star computed as described above. SW Sex experienced a large change in its behavior in 2017 and two linear ephemerides are given for before and after this change. Table 7 gives weighted quadratic ephemerides and mean rates of period change for stars where these were calculated.

Our effort to make the weights used in these fits more realistic will inevitably have introduced an element of subjectivity. Therefore we do not compute a quantitative goodness of fit metric such as a reduced chi-squared for each fit as this would not be an objective basis for evaluating fit quality. This is particularly true in the case of a nonlinear model where there are recognized problems in interpreting such a metric (Andrae *et al.* 2010).

_

Star name	P _{orb} (hours)	Time span of obs. (years)	New eclipse times measured in this study	Previously published eclipse times
HS 0728+6738 = V482 Cam	3.21	20	44	13
SW Sex = PG 1012-029	3.24	43	49	131
DW UMa = PG1030+590	3.28	39	58	596
HS 0129+2933 = TT Tri	3.35	20	42	30
V1315 Aql	3.35	38	51	80
PX And = PG0027+260	3.51	31	45	44
HS 0455+8315	3.57	21	44	9
HS 0220+0603	3.58	20	37	13
BP Lyn = $PG0859+415$	3.67	32	45	16
BH Lyn = PG0818+513	3.74	31	43	33
LX Ser = Stepanyan's Star	3.80	42	82 *	74
UU Aqr	3.93	37	53	53
V1776 Cyg = Lanning 90	3.95	35	58	11
RW Tri	5.57	65	58	151
1RXS J064434.5+334451	6.47	18	70	36
AC Cnc	7.21	41	49	19
V363 Aur = Lanning 10	7.71	42	62	19
BT Mon	8.01	45	44	10
Total		616	934	1338

Note: * Includes 36 eclipse times for LX Ser measured by the author from observations of LX Ser by Cook and Dvorak in the AAVSO International Database.

Table 2. Comparison stars used to measure the time of minimum for each star.

Star Name	Comparison Stars Used
HS 0728+6738 = V482 Cam	GSC 4360 0033, GSC 4124 0603
SW Sex = PG 1012-029	GSC 4907 1166, GSC 4907 0207, 2MASS J10145841-0305432
DW UMa = PG1030+590	GSC 3822 0070, GSC 3822 0983, GSC 3822 1157
HS 0129+2933 = TT Tri	GSC 1755 0855, GSC 1755 0871, GSC 1755 0942, GSC 1755 0926, GSC 1755 0982
V1315 Aql	GSC 1049 1329, GSC 1049 1288, GSC 1049 0464
PX And = PG0027+260	GSC 1734 0906, GSC 1734 1620, GSC 1734 0752
HS 0455+8315	GSC 4617 1102, GSC 4617 0542, 2MASS J05071087+8318101, 2MASS J05084059+8316305,
	2MASS J 05041189+8321282
HS 0220+0603	GSC 0045 1418, GSC 0045 0338, GSC 0045 1226, GSC 0045 1400, GSC 0045 0626
BP Lyn = PG0859+415	GSC 2986 1255, GSC 2986 1258, GSC 2986 1413, GSC 2986 1427
BH Lyn = PG0818+513	GSC 3421 1055, GSC 3421 0865, GSC 3421 1015
LX Ser = Stepanyan's Star	GSC 1497 1576, GSC 1497 0962, GSC 1497 1643, [HH95] LX Ser-4, [HH95] LX Ser-8
UU Aqr	TYC 5227 0328, GSC 5227 0662, GSC 5227 0399, GSC 5227 0982
V1776 Cyg = Lanning 90	GSC 3572 1508, 2MASS J20234934+4629294, 2MASS J20234988+4632359, 2MASS J20231931+4629502,
	2MASS J20233377+4634165
RW Tri	GSC 1774 0082, GSC 1178 0469, GSC 1774 0357, GSC 1774 0002
1RXS J064434.5+334451	[SGH2007] J0644-R, [SGH2007] J0644-S, [SGH2007] J0644-E, [SGH2007] J0644-G, [SGH2007] J0644-M
AC Cnc	GSC 0816 1525, GSC 0816 1021, GSC 0816 1547, GSC 0816 0998, GSC 0816 0862
V363 Aur = Lanning 10	[HH95] V363 Aur-04, [HH95] V363 Aur-19, [HH95] V363 Aur-03
BT Mon	GSC 4803 0262, 2MASS J06433904-0204189, 2MASS J06435331-0202124, 2MASS J06433839-0203003

Note: [HH95] = Henden and Honeycutt (1995), [SGH2007] = Sing et al. (2007)

Figure 1. Examples of eclipse profiles. Uncertainties in individual magnitude measurements are generally smaller than the plotted mark.

Table 3.1. Eclipse times, errors and cycle numbers for HS 0728+6738 observed and measured by the author in this study.

Table 3.2. Eclipse times, errors and cycle numbers for SW Sex observed and measured by the author in this study.

Boyd, JAAVSO Volume 51, 2023

Table 3.3. Eclipse times, errors and cycle numbers for DW UMa observed and measured by the author in this study.

Eclipse time	Error	Cvcle		Eclinse time	Error	Cycle	-	Eclipse time	Error	Cycle
(HJD)	(d)	Number		(HJD)	(d)	Number		(HJD)	(d)	Number
							-		()	
2453810.40077	0.00041	13539		2454185.43702	0.00044	72965		2454181.41978	0.00019	58214
2453836.45653	0.00024	13734		2454186.38145	0.00029	72972		2454185.38111	0.00029	58243
2453851.42254	0.00023	13846		2454553.41407	0.00048	75692		2454224.45051	0.00043	58529
2453853.42648	0.00013	13861		2454564.34410	0.00020	/5//3		24544/3.34/80	0.00038	60351
2434174.31418	0.00022	16204		2434900.41323	0.00019	78316		2434304.40400	0.00020	61135
2454185 33706	0.00025	16345		2454907.49209	0.00019	80931		2454580.58433	0.00035	61136
2454186.40643	0.00023	16353		2455278.43821	0.00012	81065		2454588.37104	0.00028	61193
2454473.42029	0.00023	18501		2455630.35814	0.00026	83673		2454588.50711	0.00019	61194
2454493.33001	0.00023	18650		2455660.44910	0.00014	83896		2454593.42488	0.00022	61230
2454507.35967	0.00039	18755		2455662.33853	0.00028	83910		2454596.43092	0.00033	61252
2454835.39541	0.00032	21210		2455992.39775	0.00022	86356		2454884.39723	0.00024	63360
2454891.38182	0.00010	21629		2456005.48662	0.00010	86453		2454892.32009	0.00025	63418
2454895.39084	0.00009	21659		2456008.45550	0.00018	86475		2455239.30026	0.00021	65958
2454907.41644	0.00022	21749		2456343.50779	0.00012	88958		2455263.34322	0.00014	66134
2455188.41832	0.00021	23852		2456354.43764	0.00013	89039		2455270.31000	0.00013	66185
2455191.35834	0.00014	23874		2456356.46180	0.00016	89054		2455278.37037	0.00017	66244
2455200.31029	0.00019	23941		2456/28.35219	0.00019	91810		2455627.39978	0.0001/	68/99
2400010.38409	0.00024	26299		2456/39.41/02	0.00013	91892		2455620 31205	0.00020	68806
2455520.52805	0.00038	26330		2457110.45908	0.00019	94701		2455029.51205	0.00029	71464
2455889 38551	0.00028	20434		2457461 33764	0.00017	97242		2455001.45052	0.00028	71742
2455891.39036	0.00024	29113		2457462.41694	0.00015	97250		2456033.39472	0.00022	71771
2455893.39432	0.00019	29128		2457465.38568	0.00024	97272		2456088.44663	0.00035	72174
2456267.39501	0.00019	31927		2457833.36314	0.00014	99999		2456382.42440	0.00027	74326
2456271.40415	0.00015	31957		2457835.38696	0.00014	100014		2456384.47293	0.00013	74341
2456298.39531	0.00018	32159		2457836.33134	0.00026	100021		2456399.36316	0.00039	74450
2456725.30918	0.00035	35354		2457837.41089	0.00015	100029		2456413.43361	0.00024	74553
2457017.40117	0.00013	37540		2457862.37464	0.00018	100214		2456728.44826	0.00015	76859
2457020.34099	0.00034	37562		2458191.48919	0.00009	102653		2456739.37663	0.00011	76939
2457442.31106	0.00011	40720		2458212.40447	0.00013	102808		2457020.37615	0.00026	78996
2457443.38007	0.00017	40/28		2458214.42856	0.00010	102823		2457021.46907	0.00019	79004
2438099.31/49	0.00018	43037		2458507.42078	0.00008	105459		245/0/5.42859	0.00021	79399
2438105.43938	0.00010	45689		2438371.33929 2458575 38787	0.00018	105408		2437100.43843	0.00010	79620
2458100.20332	0.00040	48219		2458584 42857	0.00009	105565		2457108.48716	0.00012	79641
2458477 32701	0.00022	48466		2458585 37339	0.00014	105572		2458174 42888	0.00017	87444
2458493.36113	0.00005	48586		2458931.35406	0.00015	108136		2458188.36286	0.00021	87546
2458784.38450	0.00022	50764		2458932.43393	0.00010	108144		2458191.36841	0.00019	87568
2458806.29770	0.00031	50928		2458933.37801	0.00029	108151		2458227.43235	0.00020	87832
2458817.25411	0.00029	51010		2459281.38341	0.00015	110730		2458231.39341	0.00016	87861
2459149.43247	0.00024	53496		2459282.46286	0.00017	110738		2458234.39877	0.00035	87883
2459157.44964	0.00016	53556		2459291.36857	0.00011	110804		2458539.44267	0.00039	90116
2459159.32000	0.00023	53570		2459677.42673	0.00014	113665		2458540.39817	0.00023	90123
			-	2459683.36420	0.00025	113709		2458541.35463	0.00015	90130
				2459685.38844	0.00021	113724		2458571.40737	0.00012	90350
				2460052.42102	0.00008	116444		2458585.34131	0.00025	90452
				2460054.44524	0.00011	116459		2458593.40129	0.00019	90511
				2460064.43065	0.00028	116533		2458855.41318	0.00034	92429
							-	2458861.42412	0.00031	92473
								2438808.39090	0.00013	92324
								2459258 40274	0.00028	95379
								2459268 37535	0.00016	95452
								2459272.33702	0.00017	95481
								2459597.32418	0.00032	97860
								2459599.37245	0.00018	97875
								2459600.32970	0.00029	97882
								2459968.34763	0.00022	100576
								2459975.31458	0.00022	100627
								2459989.38528	0.00017	100730

Note: The Tables 3.1 through 3.18 are available through the AAVSO ftp site at

ftp://ftp.aavso.org/public/datasets/3882-Boyd-511-swsex.txt (if necessary, copy and paste link into the address bar of a web browser).

Table 3.4. Eclipse times, errors and cycle numbers for HS0129+2933 observed and measured by the author in this study.

Table 3.5. Eclipse times, errors and cycle numbers for V1315 Aql observed and measured by the author in this study.

Table 3.6. Eclipse times, errors and cycle numbers for PX And observed and measured by the author in this study.

Eclipse time (HJD)	Error (d)	Cycle Number	Eclipse time (HJD)	Error (d)	Cycle Number	Eclipse time (HJD)	Error (d)	Cycle Number
24540(1.4(222	0.00014	10202	2454272 50427	0.00010	50016	2454219 44720	0.00051	24709
2454001.40552	0.00014	10892	24542/2.5045/	0.00018	59910	2454518.44729	0.00051	34708
2454081.29219	0.00016	11034	2454500.44805	0.00027	60200	2434319.47234	0.00046	34/15
2434060.43646	0.00008	110/1	2434313.43202	0.00072	62620	2434323.47201	0.00050	25506
2455100.57050	0.00038	183/3	2434031.46330	0.00048	62765	2434446.40773	0.00061	25766
2455100.47729	0.00030	10903	2454070.46100	0.00040	62765	2434473.26943	0.00031	25071
2455191.27007	0.00019	20011	2454010.51097	0.00082	65156	2454505.29105	0.00022	27725
2433400.49099	0.00013	20911	2455004.47952	0.00029	65170	2434/01.43/18	0.00049	37706
24555555.58200	0.00022	21433	2455028 42251	0.00049	65200	2454/70.56547	0.00009	37790
2455827.45800	0.00014	23539	2455058.42551	0.00033	65400	2455066 45577	0.00108	39803
2455835.41770	0.00010	23590	2455052.59295	0.00070	68441	2455000.45577	0.000032	40540
2455630.59518	0.00010	25005	2455465.50164	0.00047	68441	2455175.29505	0.00032	40549
2430200.43010	0.00037	26210	2455404.55978	0.00030	68634	2455180.52005	0.00020	40038
2456227 20450	0.00019	26317	2455490.52145	0.00020	70680	2455101 20552	0.00125	40672
2430237.29439	0.00022	20474	24557723 30087	0.00040	70089	2455191.29555	0.00033	40072
2450527.40157	0.00028	20352	2455785.59087	0.00040	71590	2455201.24055	0.00014	40740
24560011.58555	0.00017	29133	2455905.24540	0.00047	72224	2455405.26063	0.00028	42511
2450901.41025	0.00021	31250	2450151.49800	0.00042	73224	2455495.20905	0.00001	42749
2450904.48240	0.00024	33787	2450149.51905	0.00033	73360	2455515.40755	0.00023	42887
2437236.40323	0.00012	33016	2450150.49000	0.00023	73300	2455795.45984	0.00024	44800
2457270.47050	0.00017	36408	2450215.51250	0.00001	75470	2455819.44115	0.00009	44904
2457624.45255	0.00033	36458	2450440.49995	0.00004	75520	2455001 25250	0.00044	45523
2457051.45448	0.00018	30438	2450455.46405	0.00030	75708	2455901.25250	0.00004	43323
2458029.40125	0.00020	39308	2456838 47024	0.00025	78285	2456150 41805	0.00038	47219
2458054.59050	0.00011	39501	2450858.47024	0.00023	78235	2456215 32501	0.00053	47267
2458362 43603	0.00013	41693	2456895 46344	0.00023	78693	2456512 42294	0.00033	47609
2458362.45005	0.00025	41700	2450075.40544	0.00035	80712	2456518 42177	0.00048	49740
2458388 40829	0.00010	41700	2457184 48150	0.00033	80762	2450518.42177	0.00085	50362
2458500.40025	0.00022	41075	2457203 47971	0.00042	80898	2456611 35720	0.00040	50375
2458741 41060	0.00017	44407	2457293 30101	0.00020	81541	2456908 45223	0.00009	52405
2458759 42431	0.000012	44536	2457303 35804	0.00042	81613	2456922 35622	0.00020	52500
2458773 38793	0.00031	44536	2457563 46136	0.00028	83475	2450722.55022	0.00041	54885
2458906 32283	0.00025	45588	2457587 48793	0.00020	83647	2457275 50498	0.00026	54913
2459105 44446	0.00018	47014	2457590 42138	0.00019	83668	2457615 48272	0.00042	57236
2459106 42148	0.00027	47021	2457960 46038	0.00063	86317	2457624 41054	0.00047	57297
2459107 39970	0.00014	47028	2457971 49598	0.00025	86396	2457994 38914	0.00082	59825
2459523 37876	0.00015	50007	2457978 48056	0.00023	86446	2457996 43794	0.00026	59839
2459526 31147	0.00011	50028	2458294 45908	0.00057	88708	2457997 46265	0.00064	59846
2459541 39281	0.00015	50136	2458295 43676	0.00018	88715	2458362 46761	0.00038	62340
2459914 36388	0.00021	52807	2458314 43516	0.00027	88851	2458379 44407	0.00025	62456
2459921 34628	0.00025	52857	2458655 41791	0.00044	91292	2458759 37448	0.00018	65052
2459928 32801	0.00018	52907	2458665 47589	0.00053	91364	2458806 35537	0.00021	65373
2.07720.02001	0.00010	02007	2458666.45373	0.00030	91371	2458817.33089	0.00013	65448
			2459024,47947	0.00032	93934	2459114.42636	0.00047	67478
			2459025.45740	0.00032	93941	2459148.38126	0.00068	67710
			2459033.41968	0.00041	93998			
			2459365.46204	0.00035	96375			
			2459366.44091	0.00031	96382			
			2459379.43190	0.00044	96475			
			2459744.44107	0.00062	99088			
			2459756.45506	0.00023	99174			
			2459757.43293	0.00059	99181			

Table 3.7. Eclipse times, errors and cycle numbers for HS 0455+8315 observed and measured by the author in this study.

Table 3.8. Eclipse times, errors and cycle numbers for HS 0220+0603 observed and measured by the author in this study.

Boyd, JAAVSO Volume 51, 2023

Table 3.9. Eclipse times, errors and cycle numbers for BP Lyn observed and measured by the author in this study.

Eclinse time	Freer	Cuela		Freer	Cycla	Eclinsa tima	Freer	Cycla
(HJD)	(d)	Number	(HJD)	(d)	Number	(HJD)	(d)	Number
2454061 40139	0.00016	14807	2454061 32109	0.00048	10038	2454186 44462	0.00069	41257
2454063 48351	0.00020	14821	2454081 31479	0.00032	10172	2454891 36892	0.00095	45870
2454078 35643	0.00014	14921	2454081 46403	0.00018	10173	2454906 49781	0.00084	45969
2454112 41335	0.00017	15150	2454086 38783	0.00026	10206	2455239 32473	0.00058	48147
2454114,49593	0.00023	15164	2455156.35608	0.00028	17377	2455260.41122	0.00042	48285
2454115.38831	0.00017	15170	2455188,43603	0.00027	17592	2455263.31415	0.00049	48304
2454895,44552	0.00018	20415	2455200.37262	0.00034	17672	2455571.38461	0.00074	50320
2454906.45070	0.00013	20489	2455490.43180	0.00028	19616	2455594.30701	0.00042	50470
2454907.34318	0.00026	20495	2455515.34977	0.00031	19783	2455619.52087	0.00059	50635
2455065.43666	0.00029	21558	2455533.40410	0.00029	19904	2455914.44759	0.00041	52565
2455495.39753	0.00032	24449	2455867.48013	0.00024	22143	2455930.34125	0.00063	52669
2455519,49112	0.00017	24611	2455884 48964	0.00012	22257	2455932 32762	0.00066	52682
2455526.48082	0.00018	24658	2456249.45127	0.00022	24703	2455942.41314	0.00039	52748
2455835.38030	0.00021	26735	2456250.49598	0.00015	24710	2455991.31277	0.00055	53068
2455850.40114	0.00018	26836	2456266.46118	0.00022	24817	2456016.37415	0.00052	53232
2456271.43853	0.00015	29667	2456609.34044	0.00042	27115	2456338.34928	0.00069	55339
2456274.41353	0.00029	29687	2456619.33720	0.00028	27182	2456343.39349	0.00056	55372
2456294.34258	0.00019	29821	2456955.50247	0.00033	29435	2456355.31121	0.00039	55450
2456538.39879	0.00012	31462	2456985.34355	0.00024	29635	2456356.38067	0.00034	55457
2456903.36710	0.00014	33916	2457354.48328	0.00027	32109	2456410.47808	0.00063	55811
2456908.42377	0.00027	33950	2457403.27389	0.00013	32436	2456415.36759	0.00065	55843
2457276.36680	0.00018	36424	2457407.30240	0.00016	32463	2456684.31780	0.00044	57603
2457291.38805	0.00021	36525	2457684.38159	0.00023	34320	2456728.32764	0.00126	57891
2457594.48734	0.00024	38563	2457698.40661	0.00021	34414	2457021.42236	0.00055	59809
2457609.50881	0.00016	38664	2458054.41601	0.00022	36800	2457059.32139	0.00083	60057
2458038.42837	0.00022	41548	2458082.31770	0.00022	36987	2457062.37785	0.00044	60077
2458039.32057	0.00017	41554	2458477.27022	0.00022	39634	2457433.40551	0.00051	62505
2458042.29484	0.00019	41574	2458492.34036	0.00031	39735	2457447.31156	0.00062	62596
2458385.40088	0.00027	43881	2458817.46349	0.00020	41914	2457455.41132	0.00026	62649
2458386.44190	0.00004	43888	2458819.40361	0.00011	41927	2457758.43751	0.00046	64632
2458719.43614	0.00012	46127	2458822.38782	0.00018	41947	2457778.30406	0.00037	64762
2458721.36860	0.00023	46140	2459158.40349	0.00019	44199	2458137.41551	0.00031	67112
2458784.42820	0.00020	46564	2459176.45724	0.00022	44320	2458161.40539	0.00031	67269
2458806.43966	0.00018	46712	2459189.43843	0.00018	44407	2458162.32198	0.00042	67275
2458911.43828	0.00015	47418	2459584.39131	0.00034	47054	2458163.39102	0.00040	67282
2458925.41820	0.00014	47512	2459597.37209	0.00038	47141	2458514.40265	0.00055	69579
2459041.42251	0.00017	48292	2459870.42209	0.00032	48971	2458517.30581	0.00051	69598
2459053.46929	0.00025	48373				2458526.32134	0.00072	69657
2459056.44407	0.00010	48393				2458539.31249	0.00049	69742
2459110.43117	0.00022	48756				2458864.34320	0.00073	71869
2459117.42066	0.00011	48803				2458886.34755	0.00040	72013
2459389.43726	0.00014	50632				2458925.46891	0.00045	72269
2459414.42257	0.00010	50800				2459240.41430	0.00037	74330
2459415.46405	0.00014	50807				2459258.44656	0.00062	74448
						2459271.43627	0.00051	74533

Table 3.10. Eclipse times, errors and cycle numbers for BH Lyn observed and measured by the author in this study.

Table 3.11. Eclipse times, errors and cycle numbers for LX Ser observed and measured by the author in this study.

Table 3.12. Eclipse times, errors and cycle numbers for UU Aqr observed and measured by the author in this study.

2459799.46523

2459859.33507 2459902.35724 0.00030

0.00055

0.00014

82236 82602

82865

Eclipse time (HJD)	Error (d)	Cycle Number	Eclipse time (HJD)	Error (d)	Cycle Number	Eclipse time (HJD)	Error (d)	Cycle Number
2454181 48914	0.00029	44915	2454316 41420	0.00032	63266	2454323 44995	0.00046	48760
2454186 32132	0.00042	44946	2454628 52570	0.00023	65236	2454357 47405	0.00027	48968
2454199 41436	0.00053	45030	2454976 44297	0.00038	67432	2454365 48955	0.00036	49017
2454482 32954	0.00048	46845	2454994 50414	0.00026	67546	2454728 47437	0.00051	51236
2454834 45234	0.00046	49104	2455001 47525	0.00033	67590	2454735 34486	0.00034	51278
2454884 33284	0.00052	49424	2455037 43960	0.00020	67817	2454736 32601	0.00056	51284
2455247 36666	0.00027	51753	2455662 45627	0.00040	71762	2454789 32574	0.00032	51608
2455260.46000	0.00033	51837	2455663,40637	0.00045	71768	2455038.45994	0.00069	53131
2455267.31793	0.00059	51881	2455672,43730	0.00041	71825	2455059.39716	0.00052	53259
2455594.34608	0.00035	53979	2455778.42860	0.00031	72494	2455106.34585	0.00043	53546
2455628.32676	0.00041	54197	2456028,43528	0.00029	74072	2455469,49424	0.00052	55766
2455670 41251	0.00040	54467	2456076 44023	0.00042	74375	2455490 26865	0.00048	55893
2455675.40111	0.00031	54499	2456088.48102	0.00025	74451	2455778.49715	0.00019	57655
2455895.34197	0.00038	55910	2456384.43183	0.00028	76319	2455795.50952	0.00019	57759
2455902.35570	0.00039	55955	2456403.44388	0.00026	76439	2455893.33048	0.00019	58357
2455941.32605	0.00040	56205	2456410.41513	0.00047	76483	2456159.47572	0.00030	59984
2455992 45237	0.00076	56533	2456412,47433	0.00021	76496	2456160 45716	0.00033	59990
2455994.32276	0.00053	56545	2456782.41518	0.00010	78831	2456162,42044	0.00044	60002
2455994 47949	0.00087	56546	2456792 39591	0.00050	78894	2456215 42071	0.00018	60326
2456028.45927	0.00021	56764	2456798.41635	0.00018	78932	2456512,48351	0.00045	62142
2456298.43632	0.00040	58496	2457134,45163	0.00014	81053	2456523,44298	0.00024	62209
2456356.42123	0.00032	58868	2457159.48411	0.00019	81211	2456532,43936	0.00066	62264
2456382.45272	0.00022	59035	2457163.44478	0.00017	81236	2456611.28481	0.00045	62746
2456699.34816	0.00027	61068	2457491,40048	0.00055	83306	2456612.26681	0.00033	62752
2456707.45398	0.00027	61120	2457496.47045	0.00039	83338	2456893.46177	0.00016	64471
2456726.47051	0.00038	61242	2457506.45164	0.00033	83401	2456903.44070	0.00038	64532
2457017.33447	0.00048	63108	2457900.47370	0.00029	85888	2456904.42104	0.00036	64538
2457020.45224	0.00043	63128	2457901.42457	0.00029	85894	2457258.40900	0.00022	66702
2457021.38791	0.00056	63134	2457939.44889	0.00027	86134	2457262.49817	0.00020	66727
2457433.36610	0.00032	65777	2458227.47854	0.00022	87952	2457275.42161	0.00012	66806
2457443.34252	0.00031	65841	2458228.42935	0.00028	87958	2457609.45204	0.00021	68848
2457460.48838	0.00021	65951	2458241.42094	0.00033	88040	2457617.46778	0.00040	68897
2457721.42424	0.00040	67625	2458246.49055	0.00023	88072	2457642.49568	0.00040	69050
2457727.34740	0.00043	67663	2458593.45853	0.00026	90262	2457979.47132	0.00035	71110
2458155.38234	0.00031	70409	2458594.40834	0.00031	90268	2457989.44973	0.00043	71171
2458163.33224	0.00019	70460	2458599.47913	0.00019	90300	2457993.37551	0.00026	71195
2458172.37306	0.00035	70518	2458603.43930	0.00015	90325	2458352.43417	0.00030	73390
2458840.45547	0.00035	74804	2458943.43549	0.00035	92471	2458360.44924	0.00025	73439
2458864.30434	0.00028	74957	2458946.44578	0.00033	92490	2458362.41308	0.00018	73451
2458868.35774	0.00038	74983	2458949.45551	0.00039	92509	2458363.39380	0.00024	73457
2459221.41548	0.00019	77248	2459341.41767	0.00021	94983	2458766.45546	0.00027	75921
2459238.40565	0.00017	77357	2459350.44820	0.00011	95040	2458784.28619	0.00018	76030
2459256.33224	0.00016	77472	2459354.40902	0.00033	95065	2458799.33537	0.00016	76122
			2459704.38657	0.00024	97274	2459102.44929	0.00024	77975
			2459713.41715	0.00044	97331	2459106.37518	0.00017	77999
			2459744.47026	0.00029	97527	2459107.35642	0.00036	78005
						2459476.39397	0.00025	80261
						2459478.35668	0.00047	80273
						2459498.31321	0.00043	80395
						2459499.29486	0.00029	80401

Table 3.13. Eclipse times, errors and cycle numbers for V1776 Cyg observed and measured by the author in this study.

Table 3.14. Eclipse times, errors and cycle numbers for RW Tri observed and measured by the author in this study.

Table 3.15. Eclipse times, errors and cycle numbers for 1RXS J064434.5+334451 observed and measured by the author in this study.

Eclipse time (HJD)	Error (d)	Cycle Number	Eclipse time (HJD)	Error (d)	Cycle Number	Eclipse time (HJD)	Error (d)	Cycle Number
2454238 48406	0.00059	43643	2454392 38737	0.00024	57197	2455307 42924	0 00074	7067
2454254.46252	0.00044	43740	2454419.51756	0.00027	57314	2455310.39210	0.00056	7078
2454306.51977	0.00050	44056	2454447.34346	0.00020	57434	2455313.35557	0.00049	7089
2454314.42730	0.00053	44104	2454789.37226	0.00041	58909	2455627.44814	0.00048	8255
2454646.54029	0.00092	46120	2454810.47333	0.00064	59000	2455629.33392	0.00043	8262
2454668.44971	0.00092	46253	2454835.28542	0.00050	59107	2455634.45149	0.00035	8281
2454670.42804	0.00080	46265	2455063.45767	0.00047	60091	2455655.46296	0.00045	8359
2454770.42363	0.00115	46872	2455106.35664	0.00047	60276	2455658.42635	0.00025	8370
2454994.46940	0.00068	48232	2455172.44338	0.00026	60561	2455682.39947	0.00042	8459
2455037.46488	0.00052	48493	2455487.34152	0.00042	61919	2455685.36351	0.00051	8470
2455057.39969	0.00051	48614	2455490.35562	0.00017	61932	2455850.48993	0.00045	9083
2455176.34096	0.00062	49336	2455533.48590	0.00023	62118	2455854.53082	0.00023	9098
2455460.34923	0.00100	51060	2455822.41233	0.00026	63364	2455891.43482	0.00015	9235
2455494.45030	0.00101	51267	2455828.44141	0.00023	63390	2455905.44214	0.00063	9287
2455778.46040	0.00052	52991	2455867.39741	0.00048	63558	2455914.33106	0.00043	9320
2455849.46194	0.00052	53422	2455881.31079	0.00014	63618	2455924.29847	0.00046	9357
2455893.28160	0.00088	53688	2455889.42621	0.00028	63653	2455932.37955	0.00032	9387
2456132.48198	0.00094	55140	2455914.23/96	0.00028	63/60	2455949.35041	0.00027	9450
2456144.51030	0.00076	55213	2455950.41154	0.00024	63916	2455953.38926	0.00037	9465
2450150.45908	0.00044	55210	2455955.42010	0.00051	63929	2455957.45085	0.00052	9480
2450100.48700	0.00054	55407	2455957.50910	0.00018	63946	2455959.51/5/	0.00024	9487
24301/0.40818	0.00069	57040	2456200.58189	0.00029	65050	2455900.39430	0.00028	9491
2430443.48448	0.00041	57040	2430213.43437	0.00033	65115	2433991.37304	0.00000	9000
2450440.47452	0.00033	57070	2450228.45987	0.00027	66758	2455998.57095	0.00019	9662
2456506 43829	0.00071	57410	2456619 39553	0.00012	66801	2456012 38313	0.00040	9684
2456803 46380	0.00052	59213	2456636 32322	0.00012	66874	2456013 46042	0.00027	9688
2456834 43307	0.00149	59401	2456922 46690	0.00019	68108	2456029 35457	0.00017	9747
2456840 52859	0.00068	59438	2456933 36541	0.00036	68155	2456267 47943	0.00039	10631
2456842.50564	0.00072	59450	2456935.45247	0.00017	68164	2456274.48380	0.00059	10657
2456893.40936	0.00044	59759	2457320.37908	0.00023	69824	2456294.41725	0.00019	10731
2457172.47754	0.00064	61453	2457327.33548	0.00025	69854	2456338.32439	0.00028	10894
2457174.45542	0.00088	61465	2457403.39345	0.00023	70182	2456341.28762	0.00025	10905
2457177.42075	0.00094	61483	2457623.45120	0.00056	71131	2456343.44229	0.00024	10913
2457532.43120	0.00068	63638	2457642.46534	0.00016	71213	2456382.50149	0.00026	11058
2457533.41877	0.00098	63644	2457645.47976	0.00013	71226	2456384.38677	0.00037	11065
2457545.44595	0.00083	63717	2458054.29026	0.00041	72989	2456398.39477	0.00022	11117
2457959.43351	0.00019	66230	2458059.39146	0.00026	73011	2456655.37919	0.00015	12071
2457971.46058	0.00068	66303	2458062.40634	0.00039	73024	2456662.38307	0.00019	12097
2457976.40197	0.00062	66333	2458379.39042	0.00036	74391	2456677.46827	0.00025	12153
2458246.40926	0.00048	67972	2458398.40463	0.00018	74473	2456994.52257	0.00036	13330
2458255.46985	0.00082	68027	2458401.41934	0.00037	74486	2457000.44891	0.00030	13352
2458272.43802	0.00051	68130	2458784.48887	0.00025	76138	2457016.34157	0.00023	13411
2458284.46341	0.00060	68203	2458817.41674	0.00013	76280	2457042.47208	0.00021	13508
2458643.42871	0.00069	70382	2458822.28650	0.00020	/6301	245/045.43393	0.00030	13519
2458655.45529	0.00056	70455	2458827.38796	0.00029	/6323	245/04/.31894	0.00015	13526
2458656.44378	0.00057	70461	2459101.47488	0.00031	//505	245/104.42/41	0.00020	13/38
2436007.46111	0.00043	70328	2439114.43900	0.00030	77746	2437402.55525	0.00028	14044
2436965.44915	0.00029	72440	2439137.33817	0.00028	78022	2437407.47333	0.00029	14805
24389993.47340	0.00048	72531	2439221.33700	0.00029	78022	2437408.28183	0.00047	14800
2438997.43304	0.00043	72537	2439230.42944	0.00033	78246	2437702.43803	0.00030	15958
2450998.44055	0.00048	73192	24595213.29920	0.00023	79316	2457726 41335	0.00031	16047
2459112 43907	0.00056	73229	2459541 35608	0.00023	79402	2458074 44349	0.00019	17339
2459113.42785	0.00089	73235	2459580.31229	0.00045	79570	2458085.48724	0.00047	17380
2459366.46757	0.00082	74771	2459912.36734	0.00021	81002	2458161.45098	0.00026	17662
2459367.45497	0.00075	74777	2459921.41077	0.00022	81041	2458477.42648	0.00035	18835
2459369.43276	0.00032	74789	2459928.36699	0.00022	81071	2458493.31897	0.00048	18894
						2458498.43788	0.00023	18913
						2458827.34416	0.00065	20134
						2458855.35853	0.00026	20238
						2458866.40335	0.00025	20279

Table 3.15 continued on next page.

21478

0.00018

2459189.38307

Table 3.15. Eclipse times, errors and cycle numbers for 1RXS J064434.5+334451 observed and measured by the author in this study, cont.

Eclipse time (HJD)	Error (d)	Cycle Number
2459196.38696	0.00029	21504
2459203.39060	0.00036	21530
2459592.36698	0.00064	22974
2459593.44501	0.00024	22978
2459596.40755	0.00022	22989
2459995.35223	0.00017	24470
2460002.35630	0.00027	24496

Table 3.16. Eclipse times, errors and cycle numbers for AC Cnc observed and measured by the author in this study.

Eclipse time	Error	Cycle
(HJD)	(d)	Number
2454199.45197	0.00026	32978
2454507.44198	0.00021	34003
2454891.45161	0.00036	35281
2454892.35306	0.00032	35284
2455260.43835	0.00023	36509
2455270.35440	0.00042	36542
2455619.50814	0.00082	37704
2455630.32565	0.00024	37740
2455675.39674	0.00047	37890
2455949 43118	0.00029	38802
2455959 34723	0.00034	38835
2455983 38539	0.00020	38915
2455994 50332	0.00107	38952
2455998 41002	0.00037	38965
2456001 41362	0.00037	38075
2456308 50261	0.00040	39997
2456330 /3727	0.00075	40070
2450550.45727	0.00023	40070
2456542.45028	0.00030	40110
2450080.49280	0.00037	41233
2430084.39897	0.00031	41246
2430099.42304	0.00003	41296
243/04/.3/4/3	0.00043	42450
245/059.3943/	0.00051	42496
245/080.42/48	0.00020	42566
2457421.46916	0.00028	43701
2457430.48357	0.00023	43731
2457433.48793	0.00025	43741
2457763.41179	0.00053	44839
2457803.37541	0.00022	44972
2457815.39490	0.00032	45012
2457827.41406	0.00027	45052
2458125.48746	0.00048	46044
2458137.50672	0.00026	46084
2458162.44626	0.00024	46167
2458519.41331	0.00030	47355
2458537.44254	0.00024	47415
2458568.39100	0.00031	47518
2458595.43418	0.00047	47608
2458869.46939	0.00025	48520
2458910.33507	0.00062	48656
2458925.35767	0.00019	48706
2459256.48343	0.00025	49808
2459272.40883	0.00031	49861
2459281.42325	0.00020	49891
2459632 37981	0.00047	51059
2459659 42252	0.00019	51149
2459665 43239	0.00029	51169
2459989 34592	0.00057	52247
2457767.54572	0.00027	52287
2700001.30323	0.0002/	54401

Table 3.17. Eclipse times, errors and cycle numbers for V363 Aur observed and measured by the author in this study.

Table 3.18. Eclipse times, errors and cycle numbers for BT Mon observed and measured by the author in this study.

			-			
Eclipse time	Error	Cvcle		Eclipse time	Error	Cvcle
(HJD)	(d)	Number		(HID)	(d)	Number
(1102)	(4)	114411000	_	(1102)	(4)	110000
2454191 20162	0.00043	20057		2454447 47617	0.00050	22820
2454101.59105	0.00043	29937		2454991 44779	0.00050	32820
2434392.44074	0.00017	20705		2434691.44776	0.00001	34150
2454447.57885	0.00024	30785		2454892.44988	0.00053	34153
2454471.47221	0.00031	30860		2455238.27878	0.00058	35189
2454473.39980	0.00037	30866		2455239.28089	0.00095	35192
2454810.38137	0.00031	31915		2455257.30609	0.00040	35246
2454827.40653	0.00042	31968		2455260.31093	0.00048	35255
2454835.43772	0.00044	31993		2455277.33531	0.00079	35306
2454891.33360	0.00054	32167		2455571.42510	0.00067	36187
2454892.29747	0.00021	32170		2455595.46030	0.00073	36259
2455188.48144	0.00054	33092		2455600.46698	0.00109	36274
2455191.37255	0.00040	33101		2455619.49354	0.00056	36331
2455200.36736	0.00026	33129		2455960.31808	0.00104	37352
2455515 50429	0.00013	34110		2455968.33013	0.00055	37376
2455516 46885	0.00021	34113		2455987 35688	0.00064	37433
2455524 49896	0.00034	34138		2455992 36366	0.00082	37448
2455524.49696	0.00024	34144		2455772.50500	0.00002	37475
2455520.42580	0.00020	24459		2456011 20152	0.00090	37475
2455027.29020	0.00020	24430		2450011.59155	0.00070	37303
2455054.50298	0.00020	34480		2450294.40579	0.00045	38333
2455649.46157	0.0004/	34527		2456330.51701	0.00047	38461
2455854.41351	0.00026	35165		2456338.52784	0.00048	38485
2455888.46463	0.00016	35271		2456684.35905	0.00079	39521
2455891.35618	0.00021	35280		2456707.39142	0.00025	39590
2455905.49122	0.00039	35324		2456725.41702	0.00037	39644
2455914.48560	0.00015	35352		2457011.49426	0.00023	40501
2455950.46438	0.00013	35464		2457017.50343	0.00037	40519
2455954.31900	0.00028	35476		2457020.50843	0.00037	40528
2455994.47452	0.00029	35601		2457395.37986	0.00051	41651
2456014.39134	0.00019	35663		2457402.39016	0.00052	41672
2456215.48745	0.00015	36289		2457407.39767	0.00062	41687
2456262.38905	0.00051	36435		2457803.29994	0.00042	42873
2456291.30073	0.00025	36525		2457815.31701	0.00067	42909
2456344.30534	0.00025	36690		2457827.33521	0.00038	42945
2456655.26652	0.00034	37658		2457828.33500	0.00044	42948
2456662.33389	0.00019	37680		2458137.44694	0.00033	43874
2456677 43090	0.00025	37727		2458151 46592	0.00045	43916
2456698 31132	0.00043	37792		2458161 48037	0.00039	43946
2456707 30608	0.00013	37820		2458529 34362	0.00053	45048
2456952 41251	0.00024	38583		2458536 35358	0.00047	45069
2456985 50008	0.00024	38686		2458537 35429	0.00047	45072
2456904 40400	0.00022	38714		2458866 40427	0.00023	46058
2450994.49490	0.00042	20210		2458860.49427	0.00023	46067
2437349.40309	0.00025	20006		2430009.49729	0.00039	40007
2457577.41512	0.00020	39900		2459256.50159	0.00034	4/1/2
245/429.4542/	0.00015	40068		2439249.37680	0.00034	47205
2437721.40190	0.00022	40977				
245//41.3/8/8	0.00022	41039				
245/846.4235/	0.00028	41366				
2458066.47383	0.00023	42051				
2458074.50509	0.00036	42076				
2458085.42672	0.00020	42110				
2458441.36127	0.00025	43218				
2458465.45436	0.00018	43293				
2458819.46136	0.00016	44395				
2458822.35212	0.00017	44404				
2458868.28933	0.00028	44547				
2459148.41099	0.00018	45419				
2459157.40619	0.00036	45447				
2459164.47295	0.00026	45469				
2459273.37328	0.00021	45808				
2459575.34002	0.00015	46748				
2459584.33471	0.00016	46776				
2459975.28343	0.00019	47993				
 			_			

_

Table 4. Eclipse times, errors and cycle numbers for LX Ser measured by the author from observations by Cook and Dvorak in the AAVSO International Database.

Eclipse time (HJD)	Error (d)	Cycle Number	Observer		Eclipse time (HJD)	Error (d)	Cycle Number	Observer
2452777.87523	0.00050	53555	Cook		2458192.94006	0.00020	87734	Dvorak
2452778.82598	0.00056	53561	Cook		2458193.89137	0.00042	87740	Dvorak
2452779.77652	0.00072	53567	Cook		2458220.82416	0.00025	87910	Dvorak
2452779.93474	0.00057	53568	Cook		2458227.79532	0.00032	87954	Dvorak
2452780.88542	0.00044	53574	Cook		2458233.81608	0.00042	87992	Dvorak
2452781.83604	0.00049	53580	Cook		2458239.83639	0.00045	88030	Dvorak
2452782.78676	0.00050	53586	Cook		2458242.84637	0.00036	88049	Dvorak
2452782.94528	0.00051	53587	Cook		2458272.63221	0.00031	88237	Dvorak
2452786.74760	0.00036	53611	Cook		2458589.65567	0.00034	90238	Dvorak
2452786.90593	0.00022	53612	Cook		2458966.72465	0.00027	92618	Dvorak
2452787.85672	0.00041	53618	Cook		2459271.86577	0.00043	94544	Dvorak
2457882.73016	0.00052	85776	Dvorak		2459358.68647	0.00030	95092	Dvorak
2457889.70010	0.00037	85820	Dvorak		2459363.59809	0.00021	95123	Dvorak
2457899.68152	0.00027	85883	Dvorak		2459364.70675	0.00017	95130	Dvorak
2458167.90800	0.00032	87576	Dvorak		2459375.63919	0.00029	95199	Dvorak
2458181.85027	0.00035	87664	Dvorak		2459624.85361	0.00032	96772	Dvorak
2458187.87047	0.00021	87702	Dvorak		2459625.96292	0.00050	96779	Dvorak
2458191.83129	0.00031	87727	Dvorak		2459744.47026	0.00029	97527	Dvorak

Table 5. Sources of published eclipse times.

Star Name	Sources of published eclipse times
HS 0728+6738 = V482 Cam	Rodriguez-Gil et al. (2004)
SW Sex = PG 1012-029	Penning et al. (1984), Ashoka et al. (1994), Dhillon et al. (1997), Groot et al. (2001), Fang et al. (2020), one issue of BVSOLJ
DW UMa = PG1030+590	Shafter et al. (1988), Dhillon et al. (1994), Bíró (2000), Stanishev et al. (2004), Dhillon et al. (2013),
	Boyd <i>et al.</i> (2017) (including observations from contributors to the Centre for Backyard Astrophysics), several issues of IBVS, BVSOLJ, OEJV
HS 0129+2933 = TT Tri	Warren et al. (2006), Rodriguez-Gil et al. (2007), Han et al. (2018)
V1315 Aql	Downes et al. (1986), Dhillon et al. (1991), Rutten et al. (1992), Hellier (1996), Papadaki et al. (2009), Fang and Qian (2021), a series of eclipse times by Cook published in Observed Minima Times of Eclipsing Binaries, No 10 (Baldwin and Samolyk 2005)
PX And = PG0027+260	Hellier and Robinson (1994), Stanishev et al. (2002), Han et al. (2018), several issues of IBVS
HS 0455+8315	Rodriguez-Gil <i>et al.</i> (2007)
HS 0220+0603	Rodriguez-Gil et al. (2007)
BP Lyn = PG0859+415	Grauer et al. (1994), Still (1996), Han et al. (2018)
BH Lyn = PG0818+513	Dhillon et al. (1992), Hoard and Szkody (1997), Stanishev et al. (2006), several issues of OEJV
LX Ser = Stepanyan's Star	Horne (1980), Africano and Klimke (1981), Young <i>et al.</i> (1981), Rutten <i>et al.</i> (1992), Li (2017), several issues of IBVS, BVSOLJ and OEJV
UU Aqr	Baptista et al. (1994), Han et al. (2018), several issues of BVSOLJ, IBVS and OEJV
V1776 Cyg = Lanning 90	Garnavich et al. (1990)
RW Tri	Walker (1963), Africano et al. (1978), Robinson et al. (1991), Rutten et al. (1992), Smak (1995), Subebikova (2020), several issues of IBVS, OEJV and BVSOLJ
1RXS J064434.5+334451	Sing et al. (2007), Green (2008), Hernandez Santisteban (2017), Shafter and Bautista (2021)
AC Cnc	Yamasaki et al. (1983), Schlegel et al. (1984), Zhang et al. (1987), Thoroughgood et al. (2004), Qian et al. (2007), Bruch (2022), several issues of OEJV and IBVS
V363 Aur = Lanning 10	Horne et al. (1982), Schlegel et al. (1986), Rutten et al. (1992), Thoroughgood et al. (2004), one issue of BVSOLJ
BT Mon	Robinson et al. (1982), Seitter (1984), Smith et al. (1998)

IBVS = Information Bulletin on Variable Stars: https://konkoly.hu/ibvs/; BVSOLJ = Bulletin of the Variable Star Observers League in Japan: http://vsolj.cetus-net.org/; OEJV = Open European Journal on Variable Stars: https://oejv.physics.muni.cz/

Boyd, JAAVSO Volume 51, 2023

Table 6. Weighted linear ephemerides for each star computed with all available data except in the case of SW Sex where there was a large change around 2017 and separate ephemerides are given for before and after this change. E is the cycle number.

Star Name	Weighted Linear Ephemeris	
HS 0728+6738 = V482 Cam	2452001.32754(8) + 0.133619431(2) * E	
SW Sex = PG 1012-029 (up to 2017)	2444339.6502(2) + 0.134938480(2) * E	
SW Sex = PG 1012-029 (after 2017)	2444339.689(2) + 0.13493809(2) * E	
DW UMa = PG1030+590	2446229.00633(8) + 0.136606541(1) * E	
HS 0129+2933 = TT Tri	2452540.5335(2) + 0.139637390(7) * E	
V1315 Aql	2445902.8387(2) + 0.139689996(2) * E	
PX And = PG0027+260	2449238.8368(2) + 0.146352742(4) * E	
HS 0455+8315	2451859.2458(2) + 0.148723946(5) * E	
HS 0220+0603	2452563.57441(9) + 0.149207655(3) * E	
BP Lyn = PG0859+415	2447881.8572(4) + 0.152812554(7) * E	
BH Lyn = PG0818+513	2447180.3343(2) + 0.155875642(3) * E	
LX Ser = Stepanyan's Star	2444293.0227(2) + 0.158432503(2) * E	
UU Aqr	2446347.2670(2) + 0.163580423(3) * E	
V1776 Cyg = Lanning 90	2447048.7932(3) + 0.164738652(5) * E	
RW Tri	2441129.3634(4) + 0.231883245(5) * E	
1RXS J064434.5+334451	2453403.7611(3) + 0.26937438(2) * E	
AC Cnc	2444290.3103(3) + 0.300477307(7) * E	
V363 Aur = Lanning 10	2444557.981(2) + 0.32124074(6) * E	
BT Mon	2443491.7225(9) + 0.33381330(2) * E	

Table 7. Weighted quadratic ephemerides and mean rates of period change for stars showing evidence of either an increasing or decreasing orbital period. E is the cycle number.

Star Name	Weighted Quadratic Ephemeris	Mean Rate of Period Change (msec/year)
 HS 0728+6738 = V482 Cam	2452001.3273(1) + 0.133619451(8) * E - 3(1)10 ⁻¹³ * E2	-0.16(6)
DW UMa = PG1030+590	$2446229.0069(2) + 0.136606520(7) * E + 1.7(5)10^{-13} * E2$	0.08(3)
HS 0129+2933 = TT Tri	2452540.5309(2) + 0.13963764(2) * E - 4.2(3)10 ⁻¹² * E2	-1.9(2)
V1315 Aql	$2445902.8408(1) + 0.139689913(4) * E + 6.8(3)10^{-13} * E2$	0.31(2)
PX And = PG0027+260	$2449238.8366(2) + 0.14635275(1) * E - 1(1)10^{-13} * E2$	-0.06(6)
HS 0455+8315	2451859.2476(5) + 0.14872382(3) * E + 1.9(5)10 ⁻¹² * E2	0.8(2)
HS 0220+0603	$2452563.57406(7) + 0.149207716(7) * E - 1.4(2) 10^{-12} * E2$	-0.58(6)
BP Lyn = $PG0859+415$	2447881.8584(4) + 0.15281244(2) * E + 1.5(3)10 ⁻¹² * E2	0.6(1)
BH Lyn = $PG0818+513$	$2447180.3331(2) + 0.155875697(3) * E - 5.51(3)10^{-13} * E2$	-0.22(1)
UU Agr	$2446347.2656(1) + 0.163580565(8) * E - 1.70(9)10^{-12} * E2$	-0.66(4)
V1776 Cyg = Lanning 90	$2447048.7928(3) + 0.16473869(2) * E - 5(2)10^{-13} * E2$	-0.19(8)
1RXS J064434.5+334451	$2453403.7596(3) + 0.26937469(5) * E - 1.2(2)10^{-11} * E2$	-2.8(5)
V363 Aur = Lanning 10	$2444557.9493(5) + 0.32124275(2) * E - 3.05(2)10^{-11} * E2$	-5.98(4)
BT Mon	$2443491.7162(4) + 0.33381392(1) * E - 1.127(8)10^{-11} * E2$	-2.13(2)

Table 8. Parameters of sinusoidal fits relative to a linear ephemeris.

Star Name	Period of Sinusoidal Variation (year)	Half Amplitude of Sinusoidal Cariation (sec)	
SW Sex = PG 1012-029 (up to 2017)	33 (2)	46 (6)	
LX Ser = Stepanyan's Star	13.5 (2)	55 (4)	
RW Tri up (up to 2018)	44.3 (7)	191 (7)	
AC Cnc	37.8 (7)	134 (14)	

Table 9. Parameters of sinusoidal fits relative to a quadratic ephemeris.

Star Name	Period of Sinusoidal Variation (year)	Half Amplitude of Sinusoidal Cariation (sec)	
DW UMa = PG1030+590	14.4 (3)	38 (1)	
HS 0129+2933 = TT Tri	13.0 (4)	47 (6)	
1RXS J064434.5+334451	6.2 (2)	87 (10)	

5. O–C diagrams

In these O–C diagrams, data from the published literature or derived from observations in the AAVSO International Database are shown in black while eclipse times measured by the author are shown in red. Linear ephemerides are shown dotted in black, quadratic ephemerides dotted in magenta, and sinusoidal fits dotted in green. The passing years are marked above each diagram. O–C diagrams with similar apparent behavior are grouped together. To achieve a degree of consistency between these diagrams, we have used the same scale on the O–C axis except where the range of the data is significantly larger. It is worth stating explicitly that including these fits in the O–C diagrams is a subjective exercise which yields parameters that can be quantified but does not imply a physical interpretation. The O–C diagrams are described in five groups.

 $HS \ 0728+6738 = V482 \ Cam, \ PX \ And = PG \ 0027+260,$ $HS \ 0220+0603, \ BH \ Lyn = PG \ 0818+513, \ V1776 \ Cyg =$ $Lanning \ 90$ These stars show predominantly linear behavior with weak evidence of decreasing orbital period. Their O–C diagrams with linear and quadratic ephemerides are shown in Figure 2 and parameters of the quadratic ephemerides are given in Table 7.

HS 0129+2933 = TT Tri, UUAqr, 1RXS J064434.5+334451,V363 Aur = Lanning 10, BT Mon These stars show stronger evidence of decreasing orbital periods. Their O–C diagrams with linear and quadratic ephemerides are shown in Figure 3 and parameters of the quadratic ephemerides are given in Table 7.

DW UMa = PG1030+590, V1315 Aql, HS0455+8315, BP Lyn = PG0859+415 These stars show evidence of increasing orbital periods. Their O–C diagrams with linear and quadratic ephemerides are shown in Figure 4 and parameters of the quadratic ephemerides are given in Table 7.

SW Sex = PG 1012-029, LX Ser = Stepanyan's Star, RW Tri, AC Cnc These stars show evidence of sinusoidal variation in their orbital periods relative to a linear ephemeris. Figure 5 shows their O–C diagrams with sinusoidal fits relative to a linear ephemeris and Table 8 gives parameters of these sinusoidal fits.

Stars also showing evidence of more complex behavior In addition to their behavior described above, DW UMa, HS0129+2933 and 1RXS J064434.5+334451 also show evidence of sinusoidal variation in their orbital periods relative to a quadratic ephemeris. Figure 6 shows their O–C diagrams with sinusoidal fits relative to a quadratic ephemeris. Table 9 gives parameters of these sinusoidal fits. DW UMa now appears to be diverging from this sinusoidal pattern.

Figure 5 shows that both SW Sex and RW Tri recently experienced large decreases in their orbital periods.

Prior to 2017 (cycle ~100000) the mean orbital period of SW Sex over the previous 37 years had been 0.134938480(2) d with relatively weak sinusoidal modulation. During 2017 this reduced to 0.13493809(2) d, a decrease of 34 msec and a proportional change of -2.9×10^{-6} .

Prior to 2018 (cycle ~74000) the mean orbital period of RW Tri over the previous 15 years had been 0.231883411(6) d with relatively strong sinusoidal modulation. Within a few months this changed and the mean orbital period since 2018 has been 0.23188288(6) d, a decrease of 46 msec and a proportional change of -2.3×10^{-6} .

Figure 2. O–C diagrams with linear and quadratic ephemerides for stars showing weak evidence of decreasing orbital period. Data from the published literature or derived from observations in the AAVSO International Database are shown in black while eclipse times measured by the author are shown in red. Linear ephemerides are shown dotted in black, quadratic fits dotted in magenta.

Figure 3. O–C diagrams with linear and quadratic ephemerides for stars showing stronger evidence of decreasing orbital periods. Color coding as in Figure 2.

Figure 4. O–C diagrams with linear and quadratic ephemerides for stars showing evidence of increasing orbital periods. Color coding as in Figure 2.

Figure 5. O–C diagrams with linear ephemerides and sinusoidal fits for stars showing evidence of sinusoidal variation in their orbital periods relative to a linear ephemeris. Color coding as in Figure 2 with sinusoidal fits dotted in green.

Figure 6. O–C diagrams with quadratic ephemerides and sinusoidal fits for stars showing evidence of sinusoidal variation in their orbital periods relative to a quadratic ephemeris. Color coding as in Figure 2 with sinusoidal fits dotted in green.

6. Interpretation

Several mechanisms have been proposed to explain relatively slow changes in the orbital periods of CVs above the period gap, including loss of angular momentum through magnetic braking associated with a magnetized stellar wind (Knigge *et al.* 2011), various versions of the Applegate mechanism associated with magnetically induced changes in the internal structure of the secondary star (Applegate 1992; Völschow *et al.* 2016; Lanza 2020), or a third body in the system whose presence causes a gravitationally induced oscillation of the eclipse time (Qian *et al.* 2013).

We do not believe there has been a sufficiently long period of observations to reach a firm conclusion on the long term behavior of any of the systems reported here. Whether the trends detected so far, as indicated by the fits applied to the O–C data, are maintained in the longer term only further observations will be able to determine. There have been numerous cases in the literature where attempts to assign a specific interpretation to apparently cyclical orbital behavior have failed to stand the test of time (Pulley *et al.* 2022). The dangers of interpreting observations as periodic when only two or three cycles may be present are outlined in Vaughan *et al.* (2016). We therefore do not attempt to assign physical significance to the fits shown in these O–C diagrams, but simply offer our measurements as data to anyone wishing to attempt such an interpretation in the future.

7. Summary

We report on a 17-year study to monitor the orbital periods of 18 eclipsing nova-like CVs referred to as SW Sex stars. We added 934 new eclipse times to 1338 times in the published literature and produced an O–C diagram for each star including all available data. This revealed clear trends in the behavior of most of the stars but also that many of the stars experienced deviations from these trends. We observed rapid and unusual decreases of 34 msec (a proportional change of -2.9×10^{-6}) in the orbital period of SW Sex during 2017 and of 46 msec (a proportional change of -2.3×10^{-6}) in the orbital period of RW Tri during 2018. DW UMa also appears to have recently diverged from the sinusoidal behavior it has been following for the past 30 years. It is clear from these results that observations will have to be maintained over a much longer timescale before definitive statements can be made about their long term behavior, or even whether stable long term behavior is likely for these stars. We intend to continue observing many of these stars.

8. Acknowledgements

I am grateful to the anonymous referee for a careful and helpful review. I am also grateful to Boris Gänsicke for his early encouragement to pursue this as a long-term project and to Chris Lloyd for helpful comments on an earlier draft. I acknowledge with thanks the observations of LX Ser by Cook and Dvorak in the AAVSO International Database and the use of AAVSO comparison charts and NASA's Astrophysics Data System. Software developed in the project made extensive use of the Astropy package (Astropy Collaboration 2018).

References

- Africano, J. L., and Klimke, A. 1981, *Inf. Bull. Var. Stars*, No. 1969, 1.
- Africano, J. L., Nather, R. E., Patterson, J., Robinson, E. L., and Warner, B. 1978, Publ. Astron. Soc. Pacific, 90, 568.
- Andrae, R., Schulze-Hartung, T., and Melchior, P. 2010, "Dos and don'ts of reduced chi-squared" (https://arxiv.org/pdf/1012.3754.pdf).
- Applegate J. H., 1992, Astrophys. J., 385, 621.
- Ashoka, B. N., Seetha, S., Marar, T. M. K., Kasturirangan, K., Rao, U. R., and Bhattcharyya, J. C. 1994, Astron. Astrophys., 283, 455.
- Astropy Collaboration, et al. 2018, Astron. J., 156, 123.
- Baldwin, M. E., and Samolyk, G. 2005, Observed Minima Timings of Eclipsing Binaries, No. 10, AAVSO, Cambridge, MA.
- Baptista, R., Steiner, J. E., and Cieslinski, D. 1994, *Astrophys. J.*, 433, 332.
- Bíró, I. B. 2000, Astron. Astrophys., 364, 573.
- Boyd, D. 2012, J. Amer. Assoc. Var. Star Obs., 40, 295.
- Boyd, D., et al. 2017, Mon. Not. Roy. Astron. Soc., 466, 3417.
- Bruch, A. 2022, Mon. Not. Roy. Astron. Soc., 514, 4718.
- Dhillon, V. S., Jones, D. H. P., and Marsh, T. R. 1994, Mon. Not. Roy. Astron. Soc., 266, 859.
- Dhillon, V. S., Jones, D. H. P., Marsh, T. R., and Smith, R. C. 1992, Mon. Not. Roy. Astron. Soc., 258, 225.
- Dhillon, V. S., Marsh, T. R., and Jones, D. H. P. 1991, Mon. Not. Roy. Astron. Soc., 252, 342.
- Dhillon, V. S., Marsh, T. R., and Jones, D. H. P. 1997, Mon. Not. Roy. Astron. Soc., 291, 694.
- Dhillon, V. S., Smith, D. A., and Marsh, T. R. 2013, Mon. Not. Roy. Astron. Soc., 428, 3559.
- Downes, R. A., Mateo, M., Szkody, P., Jenner, D. C., and Margon, B. 1986, *Astrophys. J.*, **301**, 240.
- Duerbeck, H. W. 1987, ESO Messenger, 50, 8.
- Fang, X., and Qian, S. 2021, *Mon. Not. Roy. Astron. Soc.*, **501**, 3046.
- Fang, X., Qian, S., Han, Z., and Wang, Q. 2020, Astrophys. J., 901, 113.
- Garnavich, P. M., et al. 1990, Astrophys. J., 365, 696.
- Grauer, A. D., Ringwald, F. A., Wegner, G., Liebert, J., Schmidt, G. D., and Green, R. F. 1994, *Astron. J.*, 108, 214.
- Green, E. M. 2008, private communication.
- Groot, P. J., Rutten, R. G. M., and van Paradijs, J. 2001, *Astron. Astrophys.*, **368**, 183.
- Hagen, H.-J., Groote, D., Engels, D., and Reimers, D. 1995, Astron. Astrophys., Suppl. Ser., 111, 195.
- Han, X. L., Zhang, L.-Y., Shi, J.-R., Pi, Q.-F., Lu, H.-P., Zhao, L.-B., Terheide, R. K., and Jiang, L.-Y. 2018, *Res. Astron. Astrophys.*, 18, 68.
- Hellier, C. 1996, Astrophys. J., 471, 949.
- Hellier, C. 2001, *Cataclysmic Variable Stars*, Springer-Verlag, Berlin.
- Hellier, C., and Robinson, E. L. 1994, Astrophys. J., 431, L107.

- Henden, A. A., and Honeycutt, R. K. 1995, Publ. Astron. Soc. Pacific, 107, 324.
- Henden, A. A., Templeton, M., Terrell, D., Smith, T. C., Levine, S., and Welch, D. 2018, VizieR Online Data Catalog: AAVSO Photometric All Sky Survey (APASS) DR10, II/336.
- Hernández Santisteban, J. V., Echevarría, J., Michel, R., and Costero, R. 2017, Mon. Not. Roy. Astron. Soc., 464, 104.
- Hoard, D. W., and Szkody, P. 1997, Astrophys. J., 481, 433.
- Hoard, D. W., Szkody, P., Froning, C. S., Long, K. S., and Knigge, C. 2003, *Astron. J.*, **126**, 2473.
- Honeycutt, R. K., Schlegel, E. M., and Kaitchuck, R. H. 1986, *Astrophys. J.*, **302**, 388.
- Horne, K. 1980, Astrophys. J., 242, L167.
- Horne, K., Lanning, H. H., and Gomer, R. H. 1982, Astrophys. J., 252, 681.
- Howell, S. B. 2006, *Handbook of CCD Astronomy*, 2nd ed., Cambridge Univ. Press, Cambridge.
- Kafka, S. 2021, Observations from the AAVSO International Database (https://www.aavso.org/data-download).
- Knigge, C., Baraffe, I., and Patterson, J. 2011, Astrophys. J., Suppl. Ser., 194, 28.
- Lanza, A. F. 2020, Mon. Not. Roy. Astron. Soc., 491, 1820.
- Li, K. et al. 2017, Publ. Astron. Soc. Japan, 69, 28.
- Papadaki, C. et al. 2009, J. Astron. Data, 15, 1.
- Patterson, J. 1984, Astrophys. J., Suppl. Ser., 54, 443.
- Penning, W. R., Ferguson, D. H., McGraw, J. T., Liebert, J., and Green, R. F. 1984, *Astrophys. J.*, **276**, 233.
- Pulley, D., Sharp, I. D., Mallett, J., and von Harrach, S. 2022, Mon. Not. Roy. Astron. Soc., 514, 5725.
- Qian, S.-B. et al. 2013, Mon. Not. Roy. Astron. Soc., 436, 1408.
- Qian, S.-B., Dai, Z.-B., He, J.-J., Yuan, J. Z., Xiang, F. Y., and Zejda, M. 2007, Astron. Astrophys., 466, 589.
- Robinson, E. L., Nather, R. E., and Kepler, S. O. 1982, *Astrophys. J.*, **254**, 646.
- Robinson, E. L., Shetrone, M. D., and Africano, J. L. 1991, *Astron. J.*, **102**, 1176.
- Rodríguez-Gil, P., Gänsicke, B. T., Barwig, H., Hagen, H.-J., and Engels, D. 2004, *Astron. Astrophys.*, **424**, 647.
- Rodríguez-Gil, P., *et al.* 2007, *Mon. Not. Roy. Astron. Soc.*, **377**, 1747.
- Rutten, R. G. M., van Paradijs, J., and Tinbergen, J. 1992, *Astron. Astrophys.*, **260**, 213.
- Sahman, D. I., Dhillon, V. S., Knigge, C., and Marsh, T. R. 2015, Mon. Not. Roy. Astron. Soc., 451, 2863.
- Schlegel, E. M., Honeycutt, R. K., and Kaitchuck, R. H. 1986, *Astrophys. J.*, **307**, 760.
- Schlegel, E. M., Kaitchuck, R. H., and Honeycutt, R. K. 1984, *Astrophys. J.*, 280, 235.

- Schmidtobreick, L. 2015, in Proceedings of The Golden Age of Cataclysmic Variables and Related Objects—III, Palermo, Italy, https://arxiv.org/pdf/1705.09332.pdf.
- Seitter, W. C. 1984, Astrophys. Space Sci., 99, 95.
- Shafter, A. W., and Bautista, A., 2021, Res. Notes AAS, 5, 207.
- Shafter, A. W., Hessman, F. V., and Zhang, E.-H. 1988, *Astrophys. J.*, **327**, 248.
- Shara, M. M., Mizusawa, T., Wehinger, P., Zurek, D., Martin, C. D., Neill, J. D., Forster, K., and Seibert, M. 2012, *Astrophys. J.*, **758**, 121.
- Sing, D. K., Green, E. M., Howell, S. B., Holberg, J. B., Lopez-Morales, M., Shaw, J. S., and Schmidt, G. D. 2007, *Astron. Astrophys.*, 474, 951.
- Smak, J. 1995, Acta Astron., 45, 259.
- Smith, D. A., Dhillon, V. S., and Marsh, T. R. 1998, Mon. Not. Roy. Astron. Soc., 296, 465.
- Stanishev, V., Kraicheva, Z., Boffin, H. M. J., and Genkov, V. 2002, Astron. Astrophys., 394, 625.
- Stanishev, V., Kraicheva, Z., Boffin, H. M. J., Genkov, V., Papadaki, C., and Carpano, S. 2004, Astron. Astrophys., 416, 1057.
- Stanishev, V., Kraicheva, Z., and Genkov, V. 2006, Astron. Astrophys., 455, 223.
- Still, M. D. 1996, Mon. Not. Roy. Astron. Soc., 282, 943.
- Subebekova, G., Zharikov, S., Tovmassian, G., Neustroev, V., Wolf, M., Hernandez, M. -S., Kučáková, H., and Khokhlov, S. 2020, Mon. Not. Roy. Astron. Soc., 497, 1475.
- Thoroughgood, T. D., Dhillon, V. S., Watson, C. A., Buckley, D. A. H., Steeghs, D., and Stevenson, M. J. 2004, *Mon. Not. Roy. Astron. Soc.*, 353, 1135.
- Thorstensen, J. R., Ringwald, F. A., Wade, R. A., Schmidt, G. D., and Norsworthy, J. E. 1991, *Astron. J.*, **102**, 272.
- Vaughan, S., Uttley, P., Markowitz, A. G., Huppenkothen, D., Middleton, M. J., Alston, W. N., Scargle, J. D., and Farr, W. M. 2016, *Mon. Not. Roy. Astron. Soc.*, 461, 3145.
- Völschow, M., Schleicher, D. R. G., Perdelwitz, V., and Banerjee, R. 2016, Astron. Astrophys., 587A, 34.
- Walker, M. F. 1963, Astrophys. J., 137, 485.
- Warner, B. 1995, Cataclysmic Variable Stars, Cambridge Univ. Press, Cambridge.
- Warren, S. R., Shafter, A. W., and Reed, J. K. 2006, *Publ. Astron. Soc. Pacific*, **118**, 1373.
- Yamasaki, A., Okazaki, A., and Kitamura, M. 1983, *Publ.* Astron. Soc. Japan, **35**, 423.
- Young, P., Schneider, D. P., and Shectman, S. A. 1981, *Astrophys. J.*, **244**, 259.
- Zhang, E. 1987, Acta Astrophys. Sinica, 7, 245.