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Abstract  Estimates of orbital parameters were made using a Bayesian optimization technique on astrometric data for 25 visual 
binary systems catalogued a century ago by the ninth Astronomer Royal, Sir Frank Dyson. An advantage of this method is that it 
provides reliable, unbiased uncertainty estimates for the optimized parameters. Reasonable agreement is found for the short period 
(< 100 yr) systems between the current study and Dyson, with superior estimation for the longer systems through the inclusion of 
an additional century of data. Dynamical masses are presented for the systems through the inclusion of parallax measurements. 

1. Introduction

	 Using the classical theory of Keplerian motion of two 
mass points together with reliable data on their distances and 
orbital periods, observations of visual binary stars reveal useful 
physical characteristics of stars. However, the proportion of 
visual binaries for which elliptic orbital motion could be clearly 
established using Earth-based data has been relatively small, 
involving periods of up to a few hundred years, while most 
known visual pairs have orbital periods in the thousands of 
years. Difficulties in finding accurate distances have also limited 
the extent to which double star astrometry could significantly 
bear on stellar astrophysics until recently. Increased precision 
of double star data including parallaxes, obtained from modern 
facilities such as the Gaia mission, is changing our perspective 
on this. It is appropriate to re-assess procedures for optimal 
parametrization of visual binary data. This paper describes 
the application of statistical optimization techniques to 25 
visual binary systems, giving optimal estimates and associated 
uncertainties for orbital parameters. 
	 An orbit can be described on the xy plane as (see, e.g. Ribas 
et al. 2002):

	 a(1 – e2)
x = ———— [cos (ν + ω) sin Ω + sin (ν + ω) cos Ω cos i]  (1)

	 1 + e cos ν

	 a(1 – e2)
y = ———— [cos (ν + ω) cos Ω + sin (ν + ω) sin Ω cos i]  (2)

	 1 + e cos ν
where a is the semi-major axis of the orbit, measured in arc-
seconds; e is the orbital eccentricity; ν is the true anomaly (or 

function of time) of the orbit of the stars about their barycenter; 
and i is the inclination, the angle between the plane of projection 
and the orbital plane. An inclination of 90 degrees would 
indicate that the orbital plane was exactly side on to our line of 
sight. ω is the argument of periastron, being the angle between 
the node and periastron (closest approach of the two stars). 
Ω is the position of the ascending node, which is the position 
angle of the intersection between the plane of projection and 
the actual plane the orbit lies in. These equations were used by 
the current study as the “model function” for an optimization 
algorithm. Initially we included two additional parameters, δx 
and δy to represent offsets in the origin of the xy coordinate 
system. These will be discussed later in section 4.3. A second 
function was used to measure how well the model, given a 
set of parameters, fitted the data. This is called the fitting (or 
optimization) function. The role of the optimization technique 
was to judiciously adjust estimates for the parameters until a set 
is reached that well fits the data set. In other words, the optimizer 
trialed different parameter values in the model function(s), 
measuring how well the model based on these functions fitted 
the data set. The measure of fit was based on the fitting function. 
Changes in the parameter estimates led to better or worse fits by 
the model to the data. The role of the optimizer is to adjust the 
parameter estimates until an optimal fit to the data is reached. In 
this paper we made use of optimization technique called Markov 
Chain Monte Carlo, fitting data of 25 double stars. 

2. MCMC models

	 A Markov model gives the transition probabilities between 
one state and another. A series of such transitions or steps is 
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called a Markov Chain. The key properties of such a process are 
that it is random and that each state (or step) is independent of 
the previous step. In other words, the future state of the process 
depends only on the current state of the process; it does not 
depend on any past states. 
	 Markov Chain Monte Carlo models (MCMC, see Robert 
and Casella 2010 and Privault 2013) are a Bayesian technique 
which allow modelling of a distribution, and in particular 
statistics about that distribution such as the mean or variance. 
To understand a given distribution, many representative 
samples are taken from it. Such random samples are called 
Monte Carlo samples, explaining part of the process name. The 
actual distribution itself does not need to be known; all that is 
required by the technique is to be able to calculate a measure 
of “goodness of fit” of a model to a given data set. MCMC 
will vary the parameters input into the basic model, leading to 
model solutions with varying levels of fit to the data. A greater 
density of such sample points will be in regions where the 
parameters better fit the data. The simplest MCMC process is the 
Metropolis algorithm, which is a random walk. The key attribute 
of MCMC is that the distribution of interest is sampled again 
and again by taking small steps across it, building up a map of 
the distribution. In our case, where we fitted orbital models to 
observational data, MCMC allowed us to provide statistical 
estimates of the model parameters and how accurately we can 
measure those parameters.
	 We used the rstan library (Stan Dev. Team 2021) for the 
MCMC modelling in the R statistical programming language 
(R Core Team 2021). This library is an interface to the STAN 
programming language. STAN is a C++ library allowing 
Bayesian inference using the No-U-Turn (NUTS) sampler 
(a variant of Hamiltonian Monte Carlo (HMC), see Hoffman 
and Gelman 2014) or frequentist inference via optimization 
methods. The HMC algorithm avoids the random walk and 
associated sensitivity to correlated parameters experienced 
by earlier MCMC methods such as the Metropolis or Gibbs 
samplers. It does this via examination of first-order gradients 
to guide its steps. This improvement leads to more rapid 
convergence than the previously mentioned methods. HMC 
still suffers from high sensitivity to the step size and the number 
of steps required to reach convergence, which are both user-
set parameters. If these are not set correctly (in particular the 
step size), HMC will either revert to random walk behavior 
(when the step size is too small) or waste computation (if the 
step size is too large). NUTS is a refinement to HMC which 
removes the need to set a number of steps through use of a 
recursive algorithm which scans a wide range of possible steps. 
The method automatically stops its steps when the chain has 
doubled back on itself. Hoffman and Gelman (2014) show that 
NUTS performs at least as efficiently as a well-tuned HMC 
method, with the advantage of requiring less user input. Given 
its advantages over earlier MCMC techniques, and the ease to 
implement the model inside R and STAN, we made use of this 
technique. 
	 We are not the first authors to apply a MCMC method to 
visual double star data, although the technique is not yet widely 
used in the field. Mendez et al. (2017) modeled the orbits of 
18 visual binaries using the Differential Evolution MCMC 

technique, which ran multiple markov chains simultaneously 
with sharing of information between the chains to aid 
convergence. Sahlman et al. (2013) used MCMC to estimate 
the orbital parameters of a low-mass companion to an ultracool 
dwarf star. Lucy (2014) successfully used a MCMC model to 
explore numerical simulations modelling total masses of visual 
binaries with measured parallaxes but incomplete orbits, finding 
that the mass estimates were unbiased when more than 40% 
of the orbit was covered by the data. Claveria (2019) applied 
MCMC to examine the impact (estimating orbital parameters) 
when partial measurements were included into a data set, finding 
that such inclusions could lead to more accurate estimation of 
the parameters in some circumstances. 

3. Study rationale

	 The current paper examines the orbits of 25 visual binaries 
catalogued by the ninth Astronomer Royal, Sir Frank Dyson. 
He listed observations spanning from the early nineteenth 
century to his time of publication (Dyson 1921). We have 
supplemented the data set with further observations collected 
over the century since 1921, sourced from the Washington 
Double Star (WDS) catalog (Mason et al. 2022). Rhodes et al. 
(2023) applied a modified version of the Levenberg-Marquardt 
(see Bevington 1969) optimization technique to this data set, 
coupled with examination of the χ2 Hessian matrix (for further 
details see Banks and Budding 1990). They provided estimates 
and accompanying uncertainties in the orbital parameters. 
Agreement between the published WDS estimates and those of 
Rhodes et al. (2023) was good. Pending issues from the paper 
included concerns whether the global minima have been reached 
by the optimization methods and that they were not local minima 
“trapping” the search methods. Rhodes et al. (2023) noted that 
final solutions were, for some systems, dependent on the starting 
estimates of the parameters—suggesting the presence of local 
minima. There was also interest in using an alternative technique 
to explore the uncertainties in the parameter estimates, perhaps 
allowing tuning of the step sizes applied to the curvatures from 
the Hessian matrix that were used to provide uncertainties for 
the optimized parameters. While a grid search might have given 
insight into the first concern, MCMC could address both and 
therefore led to this current study.

4. Analysis

	 Table 1 lists the optimal parameter values and associated 
standard deviations for each of the Dyson systems. The 
parameters δ x and δ y are not included in the table for reasons 
of space. These are zero point adjustments to the co-ordinate 
system, and fell within one standard deviation of zero in all 
cases. Position angles had been precessed to the year 2000 
(see page 73 of Aitken 1964; page 121 of Cocteau 1981; and 
page 276 of Greaney 2004). This was important for the earlier 
observations which were collected nearly 175 years before the 
chosen epoch.
	 Runs continued until the  ^R diagnostics (see Sinharay 2003) 
were within a thousandth of unity, which was typically achieved 
in 20,000 steps. Figure 1 plots data for four representative 
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Table 1. Parameter estimates from MCMC fitting to the Dyson systems, numbered by appearance in Dyson (e.g., 1 refers to Dyson-1 or D1).

	 System	 P	 a	 e	 ω	 i	 Ω	 Epoch	 σ	 BD

	 1	 168.28 ± 0.64	 1.0118 ± 0.0057	 0.319 ± 0.010	 370.0 ± 1.6	 44.6 ± 0.6	 180.1 ± 0.1	 1955.08 ± 0.72	 0.1008 ± 0.0026	 BD+22 146
	 2	 144.88 ± 1.89	 0.8388 ± 0.0170	 0.230 ± 0.039	 364.0 ± 10.3	 62.2 ± 1.5	 100.4 ± 1.6	 1913.08 ± 3.81	 0.2191 ± 0.0083	 BD+46 536
	 3	 872.48 ± 211.59	 0.8439 ± 0.1208	 0.825 ± 0.005	 282.4 ± 46.8	 157.3 ± 7.3	 28.7 ± 46.0	 1914.73 ± 1.41	 0.1060 ± 0.0036	 BD+23 473
	 4	 187.04 ± 4.37	 0.5792 ± 0.0291	 0.458 ± 0.052	 28.4 ± 8.5	 56.9 ± 1.6	 74.5 ± 2.7	 1886.49 ± 3.40	 0.0798 ± 0.0043	 BD+31 737
	 5	 94.12 ± 0.37	 0.7487 ± 0.0170	 0.597 ± 0.022	 303.6 ± 2.4	 53.8 ± 1.2	 143.7 ± 1.5	 1981.09 ± 0.46	 0.0821 ± 0.0041	 BD+13 728
	 6	 57.38 ± 0.45	 0.3413 ± 0.0340	 0.722 ± 0.066	 229.5 ± 5.4	 71.4 ± 2.3	 5.3 ± 2.2	 1942.04 ± 0.56	 0.0693 ± 0.0038	 BD+1 1959
	 7	 105.58 ± 0.55	 0.3484 ± 0.0057	 0.413 ± 0.024	 –16.0 ± 7.1	 27.4 ± 2.9	 145.3 ± 5.9	 1986.60 ± 0.84	 0.0632 ± 0.0026	 BD+54 1331
	 8	 632.95 ± 221.39	 1.4929 ± 0.4947	 0.954 ± 0.024	 72.4 ± 40.6	 147.1 ± 19.2	 150.9 ± 46.1	 1894.42 ± 4.1	 0.1067 ± 0.0038	 BD+26 2345
	 9	 291.69 ± 19.65	 0.8702 ± 0.0616	 0.604 ± 0.052	 147.3 ± 11.4	 134.2 ± 4.6	 196.9 ± 6.5	 1872.97 ± 4.4	 0.1505 ± 0.0049	 BD+37 2433
	 10	 155.95 ± 0.39	 2.4417 ± 0.0071	 0.451 ± 0.005	 199.8 ± 0.8	 47.1 ± 0.3	 155.7 ± 0.4	 1916.72 ± 0.24	 0.1307 ± 0.0030	 BD+27 2296
	 11	 273.31 ± 1.60	 0.9240 ± 0.0195	 0.497 ± 0.037	 359.0 ± 1.0	 63.8 ± 1.9	 259.0 ± 1.3	 1874.95 ± 2.12	 0.0992 ± 0.0041	 BD+10 2739
	 12	 88.44 ± 0.45	 0.3225 ± 0.0084	 0.551 ± 0.029	 131.5 ± 78.1	 170.6 ± 5.8	 37.9 ± 78.1	 1883.65 ± 0.73	 0.0687 ± 0.0029	 BD+42 2531
	 13	 290.86 ± 4.00	 1.4049 ± 0.0090	 0.599 ± 0.010	 359.7 ± 0.3	 138.8 ± 0.9	 179.0 ± 0.8	 1872.92 ± 0.39	 0.1213 ± 0.0032	 BD+37 2636
	 14	 219.53 ± 0.98	 2.2300 ± 0.0209	 0.755 ± 0.007	 107.6 ± 1.1	 109.9 ± 0.9	 71.8 ± 0.03	 1701.34 ± 0.10	 0.3547 ± 0.0109	 BD+18 3182
	 15	 129.04 ± 0.53	 0.9566 ± 0.0120	 0.618 ± 0.013	 145.1 ± 4.6	 25.9 ± 1.8	 62.2 ± 4.3	 1938.77 ± 0.35	 0.1422 ± 0.0036	 BD+2 3118
	 16	 123.27 ± 0.89	 0.9364 ± 0.0138	 0.323 ± 0.025	 207.7 ± 4.7	 63.3 ± 0.9	 59.3 ± 1.0	 1893.14 ± 1.50	 0.1358 ± 0.0561	 BD+43 2639
	 17	 265.57 ± 6.45	 1.0063 ± 0.0141	 0.552 ± 0.019	 242.9 ± 4.4	 30.4 ± 1.7	 51.3 ± 3.3	 1895.46 ± 1.04	 0.1159 ± 0.0040	 BD+28 2624
	 18	 84.86 ± 0.94	 0.2584 ± 0.0256	 0.650 ± 0.119	 12.9 ± 7.2	 125.8 ± 7.1	 152.7 ± 7.1	 2049.18 ± 5.78	 0.0545 ± 0.0045	 BD+56 1959
	 19	 299.9 ± 24.8	 1.1592 ± 0.0509	 0.612 ± 0.046	 309.1 ± 3.8	 102.0 ± 1.0	 70.9 ± 1.0	 1915.57 ± 1.92	 0.1826 ± 0.0065	 BD+03 3610
	 20	 347.5 ± 2.4	 1.0369 ± 0.0279	 0.632 ± 0.004	 359.3 ± 0.7	 106.2 ± 2.5	 103.3 ± 1.0	 1882.96 ± 3.94	 0.1098 ± 0.0036	 BD+27 3391
	 21	 631.5 ± 76.7	 2.4856 ± 0.1480	 0.468 ± 0.049	 168.7 ± 97.8	 170.0 ± 6.4	 180.6 ± 97.5	 1866.12 ± 6.60	 0.2067 ± 0.0068	 BD+44 3234
	 22	 167.6 ± 2.8	 0.6367 ± 0.0056	 0.023 ± 0.019	 92.3 ± 100.8	 48.0 ± 1.2	 154.0 ± 1.2	 1899.67 ± 46.67	 0.0725 ± 0.0029	 BD+34 3727
	 23	 200.0 ± 3.0	 0.8015 ± 0.0184	 0.485 ± 0.023	 49.0 ± 4.1	 64.7 ± 0.8	 175.2 ± 1.3	 1898.68 ± 1.91	 0.0823 ± 0.0037	 BD––6 5604
	 24	 92.1 ± 0.4	 0.7045 ± 0.0382	 0.757 ± 0.027	 283.0 ± 30.8	 16.5 ± 8.6	 180.7 ± 31.1	 1905.29 ± 0.35	 0.1065 ± 0.0050	 BD+4 4994
	 25	 251.3 ± 29.6	 0.9086 ± 0.0571	 0.594 ± 0.076	 213.6± 13.9	 131.1 ± 6.4	 143.3 ± 7.1	 1899.70 ± 4.5	 0.0730 ± 0.0045	 BD+38 5112

Note: Uncertainties are single σ (one standard deviation). See the text for the explanation of the symbols used as the column titles other than “Epoch,” which is 
the time of phase zero for the orbital ephemeris, the orbital period (P) in years, and σ which is an estimate of the Gaussian noise of the data observations (the 
“error” in the x and y coordinates). σ is a free parameter in the MCMC fits. “BD” gives an alternative ID for each system, allowing cross referencing.

(a) Dyson-6 (b) Dyson-10

(c) Dyson-18 (d) Dyson-21

Figure 1. Observations and model orbits for representative Dyson systems selected to show a range of data sets, from complete orbits to partial and of different 
noise levels. East increases to the right, and down is northwards (as per convention in many visual binary papers). The model orbits are shown as the red curve, 
observations are plotted as black dots, and the blue lines connect the observations to their modelled positions on the model orbits. The star symbol at (Δ x, Δ y) = 
(0,0) is the location of the primary star in each system. These parameters should not be confused with δ x and δ y mentioned in the paper text, which are adjustments 
to the origin used by the optimizer to improve the fit. Orbital parameters are given in Table 1.
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Dyson systems, along with the model orbit based on the optimal 
parameter values given in Table 1. Again, not all fits to the data 
are shown in this paper to conserve space. 
	 Figure 2 is an example of a “corner plot,” which were 
generated for all fits. This is one of the standard diagnostic tools 
used in MCMC analysis. This figure is representative of the 
corner plots for the other systems. The diagonal running from 
upper left to lower right plots histograms plotting parameter 
estimates from each of the last 10 thousand MCMC steps, for 
each of the parameters in turn. These are all nicely Gaussian 
shaped in the diagram, indicating a stable solution has been 
reached. Correlations between the parameters are given in the 
boxes to the upper right, while the charts to the lower left plot 
each parameter against the others. These charts clearly show 
the correlations between parameters, or lack thereof. 
	 Most systems were simple convex optimizations. D8 (D for 
Dyson), D12, D18, D20, D21, D22, D24, and D25 were more 
challenging systems. Convergence was more difficult due to 
higher levels of noise and/or shorter orbital arcs being observed 
for these systems compared to the others in this set. D12, D20, 
and D21 exhibited double peaks in the posterior distributions, 
indicating problems with the symmetry of some of the angle 
parameters. A point optimization technique could settle in one 
of these two minima, depending on the starting parameter values 
chosen.
	 The dynamical (or combined stellar) mass Md of such 
binary systems can be calculated if the parallax is known, via 
an equation (Malkov et al. 2012) based on Kepler’s third law:
	 a3

Md = ——                    (3)
	 π3 P2

where both a and the parallax π are in milli-arcseconds, P 
is in years, and Md is in solar masses. Estimated dynamical 
masses are given in Table 2, based on Hipparcos (Perryman 
et al. 1997a, 1997b and Gaia Data Release 3 (Gaia Collab. 
et al. 2022) parallaxes. Errors in a, P, and π were propagated 
through Equation 3 to give the single σ uncertainties presented 
in Table 2. Not all of the systems with parallaxes available from 
both catalogs have dynamical mass estimates within formal 
statistical agreement at 2σ.

4.1. Comparison with WinFitter results
	 Figure 3 plots the final parameter estimated from WinFitter 
(Rhodes et al. 2023) against this paper’s MCMC results. 
Agreement overall is good, although we note that the longer 
period systems tend to have less well-constrained estimates 
for the parameters, as might be expected. Coefficients of 
Determination (R2) between the two sets of estimates, for 
each parameter, are shown in the sub-figures. The regression 
slopes are not substantially different from unity, indicating 
good agreement between the two sets. Such agreement is 
comforting, and lends support to being able to later use the 
HMC-based program and technique on other systems which 
have not been modeled before—indeed, a key driver for 
this project was the need to verify that a program written to 
model the orbit of V410 Puppis was correct (Erdem et al. 
2022), hence modeling the “known” systems of Dyson. The 
gray-shaded regions give the formal 2σ uncertainties in the 

regressions, showing that in general there is not a difference 
from a slope of perfect agreement for most of the parameters at 
the 95% statistical confidence level. The exception is for period, 
where the WinFitter solutions for the longest period systems 
are in general smaller than the MCMC-based estimates. It is 
worth noting that the uncertainties given for these systems by 
the HMC method are large, indicating a lack of confidence in 
the point estimates. Overall the estimated uncertainties from 
the HMC method are larger than those from WinFitter, but the 
value varies by parameter. Regression of the logarithm of the 
uncertainties gave the following relationships for the errors: 

  log P = (0.41 ± 0.10) + (0.94 ± 0.12) log PW with R2 = 0.72, 
  log a = (0.77 ± 0.12) log aW with R2 = 0.97, 
  log e = (0.74 ± 0.04) log aW with R2 = 0.95, 
  log i = (0.37 ± 0.06) + (0.76 ± 0.11) log iW with R2 = 0.69,
  log ω = (1.09 ± 0.0.33) log ωW with R2 = 0.32, 
  log Ω = (0.24 ± 0.09) + (0.66 ± 0.14) log ΩW with R2 = 0.52, 

where the subscript W refers to the results from the WinFitter 
fits by Rhodes et al. (2023). In these equations, for simplicity 
we have used the parameter symbol as a placeholder for 
the error estimate of a parameter. We recommend the HMC 
approach as more rigorous, but given the substantially lower 
time required by WinFitter (seconds as opposed to MCMC 
runs which may take a day or more on a M1 Macbook Pro), 
these empirical scaling rules could be helpful for interpreting 
first looks using WinFitter. Rhodes et al. (2023) had assumed 
a constant 5% “mean observational error,” which appears to be 
an underestimate of the actual scatter when compared with the 
σ values given in Table 1. It would be an interesting extension 

Table 2. Dynamical masses (solar units) based on Hipparcos and Gaia DR3 
parallaxes (where available). Dyson numbers are used to identify the systems. 
Errors are one standard deviation.

	 Dyson ID	 Hipparcos	 Gaia

	 1	 2.00 ± 0.04	
	 2	 1.74 ± 0.06	
	 3	 1.83 ± 0.52	
	 4	 5.81 ± 0.31	
	 5	 3.20 ± 0.12	 4.07 ± 0.05
	 6	 2.87 ± 0.19	
	 7	 14.4 ± 0.16	
	 8	 6.11 ± 0.76	 5.05 ± 0.76
	 9	 1.75 ± 0.17	 1.33 ± 0.16
	 10	 1.44 ± 0.02	
	 11	 0.85 ± 0.10	 0.89 ± 0.04
	 12	 2.53 ± 0.12	
	 13	 1.37 ± 0.05	 1.75 ± 0.06
	 14	 1.75 ± 0.03	
	 15	 7.86 ± 0.06	
	 16	 1.07 ± 0.08	
	 17	 2.88 ± 0.07	 3.71 ± 0.04
	 18	 1.54 ± 0.20	
	 19	 2.85 ± 0.15	
	 20	 2.48 ± 0.15	 2.13 ± 0.05
	 21	 4.98 ± 0.20	 4.07 ± 0.20
	 22	 2.37 ± 0.08	
	 23	 2.88 ± 0.08	 2.86 ± 0.05
	 24	 1.36 ± 0.13	
	 25	 1.45 ± 0.21	 1.48 ± 0.20
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Figure 2. Example “corner plot” based on the MCMC fitting for Dyson-16, which is representative of corner plots for the other systems. This represents 10,000 
steps in the Markov chain, excluding the initial 10,000 steps known as “burn-in.” These steps are excluded from the final results, and are considered a result of 
starting the optimization in a lower probability set of parameters, leading to movement to the global minimum. The columns and rows correspond to the optimized 
parameters, namely P, a, e, ω, i, Ω, epoch,Δ x, Δ y, and σ, in that order. The diagonal shows histograms of the parameter estimates, the upper right of the figure 
gives the correlation coefficients between pairs of the parameters, and the lower left plots the parameters estimates for pairs of the parameters. See text for more 
information.

to this project to run the same fitting software (WinFitter) 
on these systems with the noise levels set to the values of σ 
found by the MCMC fitting of the current paper, and see if 
these error estimates by WinFitter and our HMC method are 
in closer agreement.

4.2. Comparison with Dyson results
	 Figure 4 compares the optimal parameter estimates from 
Dyson (1921) and the HMC method of the current paper. 
Naturally, the HMC method had access to an extra century 
for further observations, which helped constrain the orbital 
parameter estimates further. The charts show overall good 
agreement between the Dyson estimates and those of this 
paper. The longer period systems can show weaker agreement 
than for the shorter period ones, such as shown in Figure 4a 
where systems 8, 9, and 21 have clearly different estimated 
periods. Removing these three systems gives a regression 
slope of 0.99 ± 0.08, assuming a zero intercept, and the 
coefficient of determination R2 = 0.88, which confirm good 
agreement. Similarly, the agreement is good for a (slope 0.96 
± 0.04, R2 = 0.95, Figure 4b and e (slope 0.93 ± 0.07, R2 = 
0.90, Figure 4c. It is interesting to note that in general for 

systems with orbits of  100 ≤ P < 200  years, Dyson’s estimated 
ellipticities appear systematically higher than those from the 
HMC approach. Matters become more complicated for the 
remaining parameters as there are ambiguities, e.g., inclination 
estimates can be symmetric around 90 degrees since from 
astrometric measurements alone we do not know the actual 
orbital direction of the star. Two dotted lines are therefore shown 
in each of Figures 4d, 4e, and 4f to reflect this and show again 
good general agreement. While it is possible to “reflect” some 
of the results to allow calculation of linear correlations, we have 
chosen to leave the data unadjusted, given some uncertainty 
which estimates should be reflected for some systems and we 
do not wish to present overly optimistic correlations through 
biased choices.

4.3. Parameter reduction
	 As noted above, in results from the MCMC fits the 
parameters δ x and δ y were not statistically different from zero. 
This is as expected, from the fact that those variables are actually 
redundant in the model. We therefore reran the fittings without 
these parameters to see the change in the estimates of the other 
parameter values. Overall, agreement is good as can be seen 



Soh et al.,  JAAVSO Volume 51, 2023 185

(a) P (b) a (c) e

(d) ω (e) i (f) Ω

Figure 3. Comparison between HMC and WinFitter optimal parameter estimates. Systems are denoted by their Dyson number. Regressions have been fitted to 
the data, resulting in best-fit (blue-colored) lines in the charts. Two-sigma confidence limits are shown as the gray-shaded regions. The dotted lines are those of 
perfect agreement.

in Figure 5, which plots parameter estimates from both groups 
of MCMC fittings by system and by parameter. The dotted 
diagonal lines are those of perfect agreement between the two 
methods, with data points frequently falling within error of these 
lines. Longer period systems were harder to “pin down,” having 
the larger absolute change in estimates (which was signaled 
by the larger estimated standard deviations). The formal errors 
for some systems appear to be under-estimates, such as the 
ellipticities for the longer period systems Dyson-3 (D3) and 
-20 (D20). Even if the errors are tripled to be 3σ, they will not 
overlap the dashed line of agreement between the two fittings. 
This study did not make a detailed investigation of the likely 
observational “errors” (i.e., there was no weighting applied to 
the data to reflect different observational accuracies), which 
likely contributes towards these underestimates. We plan to 
investigate improved estimation and handling of observational 
errors in further optimizations, extending this preliminary study. 
	 Table 3 presents the results of these fits, where the bolded 
text indicates 3σ differences between the results from the 
original MCMC fits (Table 1) and these with a fixed origin. 
The significant differences are mainly in the longer period 
systems D3, D11, D13, and D20, with agreement being good 
for the other systems. The data for D3 and D20 are sparse for 
roughly the first half of the observation periods, while those for 
D11 and D13 correspond to arcs without much curvature. The 
parameter estimates for the other systems are overall within 
statistical error of those from the previous fits. Removing the 

four mentioned systems from regression analyses comparing 
the parameter estimates, we first found that intercept terms 
were not statistically significant. Regressions through the origin 
for (Ω, ω, e, i, a, P) had coefficients of determination (R2) of 
(0.9979, 0.9805, 0.9940, 0.996, 0.9973, 0.9956), respectively, 
with slopes of (1.0004, 0.9859, 0.9844, 1.008, 0.998, 0.996) 
and corresponding standard errors of (0.010, 0.021, 0.017, 
0.005, 0.012, 0.015). Estimates for the dynamical masses are 
also given in Table 3. Taking log masses (from the two sets of 
MCMC fits) gave regression slopes of 1.0 ± 0.1 for the systems 
with Gaia distances and 0.99 ± 0.05 for Hipparcos distances.
	 Inclusion of the parameters δ x and δ y is not needed for 
this kind of study (they act as “nuisance” parameters), and 
we will not include them in subsequent similar studies given 
this comparison. Additionally, removal of the parameters 
reduces by two the number of dimensions being searched in 
the optimization, lowering the computational load. The results 
given in the current section and Table 3 are this paper’s final 
results for the analyzed systems.

5. Discussion

	 This paper has presented MCMC analyses of astrometric 
data for 25 systems, updating orbital parameters estimates 
given by Dyson (1921) a century ago. It has shown reasonable 
agreement between the two studies, and an even stronger 
agreement with an earlier investigation by the current team 
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(a) P (b) a (c) e

(d) ω (e) i (f) Ω

Figure 4. Comparison between HMC and Dyson optimal parameter estimates. Systems are denoted by their Dyson number. The dotted lines are those of perfect 
agreement between the two sets of parameter values. Observations are grouped by the HMC period estimates into less than 100 years, 100 to less than 200 years, 
and greater than or equal to 200 years. Dyson did not calculate uncertainties, so these are only plotted for the HMC estimates.

(Rhodes et al. 2023) using a tool (in WinFitter) they developed 
employing point estimation supplemented with examination of 
the Hessian matrix to estimate uncertainties in the parameters. 
The HMC method led to larger estimates than those calculated 
by WinFitter, which we believe are more robust, being based 
on exploration of the Bayesian posterior distribution. Finally, 
we include parallax estimates from the Hipparcos and Gaia 
missions to present estimates and associated uncertainties of 
the dynamical masses of the systems.
	 Analysis of double star orbits is a useful tool in the variable 
star analyst’s toolkit, and can be supplemented with other 
techniques to better improve understanding of the system. For 
instance, Mendez et al. (2017) extend their MCMC astrometric 
analysis with the inclusion of radial velocities, which help 
to resolve issues with the direction of the orbital movement 
and the ambiguities noted above for some of the optimized 
parameters. Member stars of a double system can be variable, 
indeed cursory examination of the TESS space telescope (Ricker 
et al. 2014) photometry for the Dyson systems (see Figure 6) 
indicates possible variable for a number of systems (D3, D5, 
D9, D10, D13, D17, D18, D20, D22, and D23). Analysis of 
such variability, such as through asteroseismology studies (see, 
e.g., Aerts et al. 2010), could provide additional insights such 
as mass estimates. It is also increasingly common for systems 
to be recognized as multiple systems, such as with the case of 
V410 Puppis (Erdem et al. 2022), where astrometric analysis 
of the orbit of third system member about an inner eclipsing 

binary pair helped provide insights into the overall system. 
	 Observations and analysis of visual binaries is not time-
consuming (see, e.g., Cleveland and Thompson 2022) in the 
actual data collection, nor is the measurement of positions and 
angles (say from CCD images). While the “payback” of such 
observations may not be immediate, we end with the thoughts 
of Hertzsprung (as given in Mason 2006): “The debt to our 
ancestors for the observations they made to our benefit, we can 
pay only by doing the same for our descendants.”
	 Using such astrometric data collected by previous 
generations of astronomers led to feelings of connection with 
both them and the development of astronomy with time, as well 
appreciation for the work by our predecessors. While missions 
such as Gaia will add data for astrometric binaries, on-going 
measurements (for instance in periods outside such surveys) 
will no doubt be appreciated by astronomers in the future. 
	 Further details and background on this project may be found 
in Soh (2023).
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Figure 5. Comparison between the MCMC fits with δ x and δ y included as free variables (“First MCMC,” the y axis) and those with the two parameters removed 
and (x,y) set to (0,0) (“Second MCMC,” the x axis). Systems are denoted by their Dyson number. The dotted lines are those of perfect agreement. Points are coded 
by color and shape by the estimated orbital periods (under 100 years, 100 to 199 years, 200 to 349 years, and greater than 350 years). Error bars correspond to one 
standard deviation. Note that the orbital periods are given in log years.

Figure 6. TESS photometry for two example systems (D17 and D20). The fluxes are non-normalized Pre-search Data Conditioning Simple Aperture Photometry 
(PDC_SAP) generated by the TESS team, which removed longstanding systematic trends. Time is the Barycentric Julian Date (BJD) – 2457000.
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Table 3. Parameter estimates from the second MCMC fitting to the Dyson systems, numbered by appearance in Dyson (e.g., 1 refers to Dyson-1 or D1). 

	 System	 P	 a	 e	 ω	 i	 Ω	 Epoch	 σ	 Hipparcos	 Gaia

	 1	 168.56 ± 0.57	 1.014 ± 0.005	 0.308 ± 0.003	 1.6 ± 1.2	 45.2 ± 0.5	 173.93 ± 0.72	 1956.28 ± 0.31	 0.0961 ± 0.0025	 2.01 ± 0.04
	 2	 142.51 ± 1.63	 0.852 ± 0.018	 0.272 ± 0.014	 37.2 ± 4.5	 61.5 ± 1.5	 99.72 ± 1.66	 1900.64 ± 1.42	 0.2244 ± 0.0084	 1.89 ± 0.06
	 3	 526.67 ± 54.22	 0.635 ± 0.029	 0.680 ± 0.024	 226.4 ± 9.8	 156.2 ± 5.1	 –2.56 ± 9.67	 1911.40 ± 0.71	 0.0867 ± 0.0035	 2.10 ± 0.35
	 4	 187.63 ± 3.84	 0.565 ± 0.011	 0.435 ± 0.021	 30.2 ± 6.0	 56.7 ± 1.6	 74.52 ± 2.50	 1887.34 ± 1.87	 0.0790 ± 0.0042	 5.37 ± 0.30
	 5	 94.08 ± 0.36	 0.753 ± 0.012	 0.622 ± 0.010	 307.2 ± 1.6	 54.0 ± 1.6	 143.94 ± 1.47	 1887.88 ± 0.39	 0.0830 ± 0.0042	 3.25 ± 0.12	 4.14 ± 0.05
	 6	 57.49 ± 0.45	 0.324 ± 0.014	 0.672 ± 0.029	 235.7 ± 3.7	 69.1 ± 2.0	 7.28 ± 2.17	 1943.09 ± 0.42	 0.0710 ± 0.0040	 2.46 ± 0.11
	 7	 105.01 ± 0.59	 0.352 ± 0.005	 0.444 ± 0.009	 –19.3 ± 7.6	 25.6 ± 3.2	 145.59 ± 6.92	 1987.46 ± 0.34	 0.0628 ± 0.0026	 14.96 ± 0.16
	 8	 669.28 ± 160.97	 1.420 ± 0.269	 0.927 ± 0.048	 61.0 ± 85.6	 139.2 ± 18.7	 154.31 ± 84.59	 1893.64 ± 3.12	 0.1064 ± 0.0037	 4.70 ± 0.48	 3.89 ± 0.69
	 9	 285.07 ± 23.37	 1.113 ± 0.068	 0.680 ± 0.068	 158.4 ± 16.5	 136.4 ± 10.0	 204.51 ± 10.88	 1857.78 ± 4.03	 0.1517 ± 0.0050	 3.83 ± 0.17	 2.92 ± 0.15
	 10	 155.79 ± 0.35	 2.438 ± 0.057	 0.446 ± 0.002	 160.6 ± 0.6	 47.2 ± 0.3	 155.73 ± 0.36	 1916.62 ± 0.11	 0.1307 ± 0.0031	 1.44 ± 0.04
	 11	 302.08 ± 12.96	 1.079 ± 0.023	 0.603 ± 0.046	 367.4 ± 6.2	 58.1 ± 2.9	 259.04 ± 2.68	 1864.90 ± 3.79	 0.0960 ± 0.0040	 1.11 ± 0.12	 1.16 ± 0.07
	 12	 88.43 ± 0.45	 0.318 ± 0.005	 0.531 ± 0.010	 130.5 ± 79.1	 170.7 ± 5.7	 129.30 ± 79.13	 1883.56 ± 0.47	 0.0684 ± 0.0029	 2.41 ± 0.12
	 13	 261.54 ± 2.65	 1.470 ± 0.008	 0.592 ± 0.004	 384.7 ± 1.1	 155.3 ± 1.1	 172.70 ± 0.96	 1864.31 ± 0.32	 0.1150 ± 0.0030	 1.94 ± 0.05	 2.47 ± 0.05
	 14	 224.05 ± 2.64	 2.254 ± 0.019	 0.762 ± 0.004	 128.9 ± 0.5	 108.1 ± 0.2	 93.35 ± 0.34	 1921.08 ± 0.16	 0.1198 ± 0.0037	 1.73 ± 0.03
	 15	 128.91 ± 0.53	 0.952 ± 0.007	 0.612 ± 0.005	 148.0 ± 4.4	 25.9 ± 1.8	 61.93 ± 4.19	 1939.50 ± 0.20	 0.1426 ± 0.0036	 7.75 ± 0.05
	 16	 122.36 ± 0.83	 0.956 ± 0.012	 0.398 ± 0.010	 205.9 ± 2.5	 63.0 ± 1.0	 59.20 ± 1.03	 1894.24 ± 0.72	 0.1379 ± 0.0057	 1.15 ± 0.08
	 17	 270.66 ± 5.12	 1.017 ± 0.011	 0.572 ± 0.008	 294.6 ± 3.4	 30.7 ± 1.7	 50.57 ± 3.17	 1896.33 ± 0.34	 0.1158 ± 0.0039	 2.86 ± 0.06	 3.69 ± 0.04
	 18	 86.97 ± 1.19	 0.264 ± 0.008	 0.651 ± 0.025	 4.1 ± 8.2	 123.5 ± 3.7	 151.10 ± 4.24	 2054.76 ± 1.63	 0.1768 ± 0.0146	 1.57 ± 0.12
	 19	 290.23 ± 13.31	 1.154 ± 0.029	 0.622 ± 0.018	 305.9 ± 2.0	 102.9 ± 0.6	 71.02 ± 1.00	 1914.13 ± 0.81	 0.1832 ± 0.0065	 3.00 ± 0.10
	 20	 377.31 ± 15.01	 1.197 ± 0.003	 0.908 ± 0.019	 368.1 ± 3.8	 130.9 ± 7.0	 99.75 ± 2.70	 1886.48 ± 1.66	 0.1101 ± 0.0037	 3.23 ± 0.15	 2.77 ± 0.07
	 21	 567.53 ± 42.83	 2.384 ± 0.119	 0.362 ± 0.024	 167.8 ± 95.4	 169.1 ± 6.5	 180.74 ± 94.94	 1866.16 ± 3.82	 0.2103 ± 0.0068	 5.44 ± 0.14	 4.45 ± 0.16
	 22	 164.14 ± 2.58	 0.641 ± 0.06	 0.057 ± 0.016	 71.7 ± 7.1	 48.3 ± 1.3	 153.62 ± 1.19	 1873.57 ± 3.17	 0.0725 ± 0.0028	 2.52 ± 0.08
	 23	 198.56 ± 2.54	 0.824 ± 0.011	 0.521 ± 0.015	 45.7 ± 2.5	 64.8 ± 0.8	 175.19 ± 1.15	 1896.37 ± 0.82	 0.0830 ± 0.0038	 3.29 ± 0.07	 3.27 ± 0.04
	 24	 96.09 ± 0.40	 0.710 ± 0.018	 0.764 ± 0.008	 243.4 ± 8.3	 18.8 ± 6.6	 168.00 ± 8.29	 1905.42 ± 0.24	 0.1063 ± 0.0050	 1.28 ± 0.10
	 25	 276.56 ± 39.81	 0.946 ± 0.041	 0.688 ± 0.35	 212.4 ± 10.9	 131.9 ± 10.9	 137.61 ± 5.33	 1904.85 ± 1.14	 0.0734 ± 0.0045	 1.35 ± 0.23	 1.38 ± 0.23

Note: Parameter columns are the same as in Table 1. Text in bold indicates 3-σ differences with the results of the initial MCMC modeling given in Table 1. A high 
σ was chosen to reduce the number of false positives that will occur in repeated statistical testing like this, to clearly show the systems with differences. System 
masses (in solar units) are calculated using the Hipparcos and Gaia parallaxes (given in the columns labelled “Hipparcos” and “Gaia”).
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