MOTESS-GNAT Sky Survey: MG1 Long Period Variable Stars Re-Visited After 10 Years

Brian L. Craine

Western Research Company, Inc. and GNAT, Inc., 3275 W. Ina Road, Suite 221-A1, Tucson, AZ 85741; send email correspondence to blcraine@wrc-inc.com

Andrew S. Kulessa

Colin Gum Observatory, Greenhill, SA, Australia; GNAT, Inc., 3275 W. Ina Road, Suite 221-A1, Tucson, AZ 85745;
andskul@gmail.com
Eric R. Craine
Western Research Company, Inc. and GNAT, Inc., 3275 W. Ina Road, Suite 221-A1, Tucson, AZ 85741; ercraine@wrc-inc.com

Roger B. Culver

GNAT, Inc., 3275 W. Ina Road, Suite 221-A1, Tucson, AZ 85741; Professor Emeritus of Astronomy, Colorado State University, Fort Collins, CO 80523; Roger.Culver@coloradostate.edu

Adam L. Kraus
Department of Astronomy, University of Texas, Austin,TX 78712; alk@astro.as.utexas.edu

Roy A. Tucker

Tucson, AZ (deceased)

Douglas K. Walker

Prime Solutions Group, Inc and GNAT, Inc., 3275 W. Ina Road, Suite 221-A1, Tucson, AZ 85741; dougwalker@psg-inc.net
Received August 9, 2022; revised November 25, 2022; accepted December 6, 2022

Abstract

The MG6 survey is a 10-year follow-up to the MG1 survey. A new reduction of these surveys has been performed and screened for candidate long period variable stars (LPVs). In combination with the original 47 LPVs found in the MG1 variable star candidate catalog a total of 138 LPVs have been identified in the MG1 48.3'-wide equatorial strip. The additional data have allowed for refinement of the period determinations for most of the LPVs. Some of the biases of the selected population with respect to period length and color distribution are examined. This study has newly identified 9 unique LPVs, bringing the total number of new LPV identifications from the MOTESS-GNAT survey to 56 . The number of LPVs in this list exhibiting hump characteristics has been expanded to at least 15 .

1. Introduction

Since 2001 the Moving Object and Transient Event Search System (MOTESS) (Tucker 2007) and the Global Network of Astronomical Telescopes (GNAT) have collaborated to produce equatorial sky surveys and data reduction pipelines useful for the discovery and characterization of variable stars. The first MG1 data pipeline (Kraus et al. 2007) produced a subset of candidate variable stars numbering about 26,000 out of the nearly two million stars detected. This work is referred to as the "MG1 Variable Star Catalog" (MG1-VSC).

Among the variable stars characterized are the long period variables (LPVs) detected in MG1-VSC (Craine et al., 2015). Since publication of those observations a second survey (MG6) has been completed; this survey was conducted for the same survey strip that was observed for MG1 but 10 years later, hence adding additional temporally distributed observations of this set of LPVs. Further, the MG1 observations have been re-reduced using a newly developed pipeline which generates a
comprehensive database of light curves of all the stars detected in the survey images (Craine et al. 2021). The MG6 survey data have been reduced using the same protocols.

Reported here are the results of the additional observations of LPVs resulting from re-evaluation of the MG1 and MG6 databases.

2. Methods

The MG1 and MG6 survey images (section 2.1) were reduced to produce the MG1A and MG6A databases of unsaturated objects and associated screening parameters (section 2.2). Some of those parameters were used as selection criteria for potential LPVs (section 2.3). The original images containing the potential LPVs were then subjected to more stringent photometry (section 2.4) and these data were used to determine an estimate of the period (section 2.5). This section provides more detail on these steps and other methodology.

2.1. Observations

The MG1 and MG6 surveys consisted of scan mode images centered at a declination of $+03^{\circ} 18^{\prime} 20^{\prime \prime}$ with a width of 48.3^{\prime} in declination obtained between 2001-2003 (282 nights observing) and 2011-2013 (232 nights observing), respectively, with each object typically observed three times per night at 20-minute intervals by the MOTESS system (Tucker 2007; Kraus et al. 2007). The image scale for the scan mode images was 2.83 arcsec/pixel. Unfiltered observations with an integration time of 192 seconds yielded a practical detection range of 12.6 to 17.4 in Gaia R band magnitude.

2.2. Data reduction

The MG1 and MG6 survey images were processed, analyzed, and the data organized into SQL databases for each survey using dedicated Python scripts that relied upon the Astropy library as described (Craine et al. 2021). These databases were designated MG1A and MG6A. The light curve data saved to the MG1A and MG6A databases were obtained using an unsupervised pipeline that employed a high image stringency that rejected many images that contained usable data for some objects in the image. In addition, the data were obtained from only two of the three telescopes (A and B) in the MOTESS system (Tucker 2007). Single aperture photometry with an ensemble comparison was used to determine the screening light curves (see Craine et al. 2021 for details).

Parameters calculated for each object included the LombScargle false alarm probability (FAP) (Press 1996; Scargle 1982), the inverse of the Von Neuman ratio ($1 / \eta$) index (Von Neumann 1941), Equation (1), and the short-term slope (μ), Equation (2).

The inverse Von Neuman index is calculated as:

$$
\begin{equation*}
1 / \eta=\frac{(N-1) \sigma^{2}}{\sum_{i=1}^{N-1}\left(m_{i+1}-m_{i}\right)^{2}} \tag{1}
\end{equation*}
$$

where N is the number of observations, m is the magnitude of the observations in order of observation time, and σ is the standard deviation of the magnitudes. The Von Neuman statistic, η, is the mean square successive difference of the time series divided by the sample variance, which is small when there is strong positive serial correlation between successive data points. This is a statistical test for the serial dependence of a time series of data (i.e., H_{0} :; there is no serial correlation of successive magnitudes). The inverse Von Neuman index is a convenient metric which increases in value for variable objects. The observed range of $1 / \eta$ for survey objects was 0.27 to 21.9 .

A new metric specifically tailored for the detection of long period variables, the short-term slope (μ), is introduced. This metric calculates the average absolute value of the slope of sub-intervals of a light curve. It is calculated as:
where t_{i} is the time of ith observation in the nth interval, m_{i} is the differential magnitude at t_{i}, t -bar is the average time of observations in the nth interval, m-bar is the average magnitude of observations in the nth interval, $\Delta \mathrm{t}$ is the total time of the survey, δ is a selected time sub-interval (which was 60 days for the LPV search), and k_{n} is the number of observations in the nth interval. This parameter is sensitive to increasing or decreasing trends in magnitude over times scales of multiples of δ. For convenience the μ metric was scaled to a slope per ~ 5.184 days (10^{6} seconds). The theoretical range of μ is 0 to undefined. In practice, the survey objects had an observed range of 0.0 to 3.2.

2.3. LPV selection

The selection of the potential LPV objects was a two-step procedure. First, objects in the databases were selected by the union of objects with an FAP $<0.00001, \mu>0.09$, and $1 / \eta$ >5.0. These cutoffs were selected as values that maximized the enrichment of LPVs in the selected objects. This enrichment averaged about 10^{4}-fold (detailed in section 3.1, Table 1). Secondly, the light curves from these objects were screened visually and obvious erroneous assignments, typically due to outlier points from a small number of bad images that survived initial quality checks, were rejected.

2.4. Photometry

To provide a more robust data set, selected potential LPV objects were re-analyzed employing the annular photometry routine from Astropy (Astropy Collab. 2018, ; Bradley et al., 2019). All images containing the object, including those from the third telescope, were measured. This made maximum use of images available for each LPV candidate. Two nearby reference and check stars (typically within a 5 ' radius) were selected for least crowded backgrounds. Since the images are obtained in scan mode the reference and check stars may unpredictably fall out of some frames. Consequently, the combination of reference and check stars producing the greatest number of measurements was finally used. The aperture radius was 4 px and the annulus had an inner radius of 6 px and an outer radius of 10 px for all objects. The target measurements were rejected when the corresponding check star magnitude exceeded ± 2 standard deviations of the average for the check star. These are the light curves described below (see Appendix B).

2.5. Period determination

The light curves from the annular photometry were analyzed to determine a period for the objects using a Generalized LombScargle periodogram (GLS) algorithm (Zechmeister and Kürster 2009; VanderPlas 2018).

The GLS algorithm solves for the coefficients $A \omega, B \omega$, and $\mathrm{C} \omega$ in a model describing magnitude as a function of time $(M(t))$, given by equation (3):

$$
\begin{equation*}
M(t)=A \omega \sin (\omega t)+B \omega \cos (\omega t)+C \omega \tag{3}
\end{equation*}
$$

by least squares over a frequency grid, ω. The frequency corresponding to the maximum in the periodogram is chosen as the optimum frequency and the corresponding coefficients define the light curve model. Often there can be ambiguity

Table 1. Results of screening MG1 and MG6 for LPVs.

Database	Pre-Screen	Post-Screen	Visual Accepted
MG1A	936,764	73	43
MG6A	$1,046,732$	111	95

between periodogram peaks and in these cases a method based on statistical inference employing the Vuong statistic as outlined in (Baluev 2012) is used to distinguish the preferred light curve model.

The Vuong statistic is computed for pairs of rival models, corresponding to peaks in the periodogram. This statistic tests the null hypothesis that the difference between models is consistent with random noise, while applying a significance level of 0.05 .

Aliasing was resolved by inspection of time series light curves (when available) from higher cadence observations from the Zwicky Transient Facility (Bellm et al. 2019) or ASAS-SN observations (Kochanek et al. 2017; Shappee et al. 2014).

The GLS algorithm was implemented in the Python class Gls.py (Zechmeister 2019) for all LPV candidates. A large subset of the data was also analyzed using GNAT software developed by one of the authors (A. Kulessa). Period determinations between the two codes agreed to within one day. The amplitude of objects was determined from the best light curve model according to Equation (4). This approach allows for the amplitude determination even in the case where the maximum or minimum is not observed.

$$
\begin{equation*}
\text { full amplitude }=2\left(\sqrt{\left(\mathrm{~A}_{\omega}^{2}+\mathrm{B}_{\oplus}^{2}\right)}\right) \tag{4}
\end{equation*}
$$

2.6. LPV hump measurement

LPV hump structure was identified by visual examination of light curves. A fourth order polynomial fit to the data points surrounding the hump was determined, as illustrated in Figure 1A. This section of the light curve was detrended using the determined fit yielding the recognizable hump structure as in Figure 1b. The magnitude of the hump, $\Delta \mathrm{m}$, is measured as the magnitude at the peak time. The duration is measured as the time from the rise to the fall of the curve from 0 . The phase position of the hump is calculated from the peak time and the determined period and zero time for the LPV.

2.7. Statistics

Distributions were tested for similarity using the nonparametric Kolmogorov-Smirnov two-sample test H_{0} :; the two populations from which our samples were drawn have the same distribution function, critical p-value of 0.05). The difference between sample means was tested with the twosample t-test $\left(\mathrm{H}_{0}\right.$: sample means are the same, critical p-value of 0.05). Calculations were performed using the Python scipy. stats library (Virtanen et al. 2020).

3. Results

3.1. Screening for LPVs

The completion of the MG6A database and the MG1A database together with the original MG1-VSC provides three

Figure 1. Measuring an LPV hump. (A) is the light curve for a LPV with an identified hump marked as blue dots and the nearby surrounding points marked as gray dots. The red dashed line is a polynomial fit to the surrounding gray dots. (B) is the detrended hump points as blue dots obtained by subtracting the fitted line from panel A from the light curve. The red dashed line is a polynomial fit to the hump.

Figure 2. Venn diagram showing the distribution of LPV candidates identified by the three different surveys of a 48^{\prime} declination strip centered at $+03^{\circ} 18^{\prime} 20^{\prime \prime}$.
different approaches to recover LPVs from the $+03^{\circ} 18^{\prime} 20^{\prime \prime}$ survey strip. The primary differences in the surveys are the data reduction methods (MG1A and MG6A versus MG1-VSC) or survey epoch (MG1-VSC and MG1A versus MG6A). These differences manifested in identification of overlapping and unique LPVs between the surveys as summarized in the Venn diagram shown in Figure 2.

The LPV candidates were selected from the MG1A and MG6A databases by applying cutoff values for three key parameters-Lomb-Scargle false alarm probability, inverse Von Neuman index, and the short-term slope value-to the entire collection of detected survey objects. This resulted in a small number of objects highly enriched for LPVs (see Table 1).

The post-screen objects were then manually examined for final verification as an LPV.

The MG1-VSC identified variable stars using the WelchStetson index (Welch and Stetson 1993) to create a database of 26,042 variable star candidates. The light curves of objects from this database were manually searched multiple times by at least two separate investigators, resulting in the discovery of 47 LPV candidate stars (Craine et al. 2007).

Each of the three surveys provides a unique, but related, window on the identification of LPV candidates. These relationships can be viewed in more detail in the Venn diagram shown in Figure 2. As expected, many of the objects are observed in more than one survey. Each survey also has uniquely detected objects. MG1A and MG6A, which share methodology, have 22 candidates in common, while MG1VSC and MG1A, which share epochs, have 13 candidates in common. MG1-VSC and MG6A, which only share the same declination strip, have 24 candidates in common. A total of 138 candidates were found. The diagram graphically shows the large contribution that the MG6 survey has added to the discovery of LPV candidates, suggesting that the key survey parameter is not the data processing methodology but factors affecting the image collection.

3.2. Characterization of LPV candidates

3.2.1. Observed periods

The screened objects were selected, in part, for having a high probability of being periodic based upon a LombScargle analysis (Press 1996; Scargle 1982). However, the period obtained during screening is not a reliable period due to aliasing, sampling cadences, and sample size. Therefore, the LPV candidates were re-examined using all the survey images, which included images from all three telescopes of the MOTESS system. The photometry was performed using a local background estimation by the annular photometry method with two check stars and two comparison stars. This allowed for the recovery of usable data that had been discarded in a conservative unsupervised manner in the original screen. The enlarged pool of measurements was then smoothed with a five-day recursive median filter for period analysis.

The period was determined as described in the methods (section 2.5). The distribution of periods for the candidates is shown in Figure 3. LPVs are often characterized as having periods between 80 and 1,000 days (Percy 2007). The observed distribution from the MG survey is not normally distributed and is primarily in the 200-400-day range with an apparent under-representation of longer periods. This relatively narrow distribution could result from the actual range of LPV periods or a consequence of the inherent observing cadence of the survey. The black-dotted line in Figure 3 is the distribution fit to the periods for LPVs in the GaiaDR2 survey (Mowlavi 2018), which is different from the MG period distribution $\left(\right.$ Kolmogorov-Smirnov statistic $\left.=0.31, \mathrm{P}<1.4 \times 10^{-5}\right)$. The mean periods of the MG data are different from the mean of the GaiaDR2 (275 d versus 341 d , respectively, $\mathrm{P}_{\text {(same) }}<1.4 \times 10^{-7}$), supporting the conclusion that the MG survey may be underrepresented in longer period variables due to systematic limitations. The distribution of LPVs (Miras) from the ASAS-

SN sky survey (Kochanek et al. 2017; Shappee et al. 2014) was not significantly different from the MG survey $(\mathrm{P}=0.147)$ and the mean periods (275 d versus $288 \mathrm{~d}, \mathrm{P}_{\text {(same) }}=0.174$) were not significantly different.

The Gaia DR2 survey (Mowlavi 2018) LPVs included 55 of the MG candidates and a comparison of the periods determined between the two surveys is presented in Figure 4. The agreement is quite good despite the lack of overlap in the actual timing of the surveys. LPVs are known to change their periods over time, and this may account for the small number of stars showing greater divergence from the expected value and may be good candidates for the study of more rapidly evolving stars. One of the divergent periods appears consistent with being a harmonic error in Gaia period determination (MG6A 10639637).

A similar comparison with 24 MG candidates overlapping with GCVS catalog (Samus et al. 2017) LPVs revealed a particularly good agreement for 20 of the stars (see Figure 5). Two of the stars (MG1 1388633 and MG6A 10854654) appeared to be significantly different. Despite being suspicious multiples of the GCVS period, a review of the MG data did not justify a period change.

The periods determined for the enlarged dataset, MG1A and MG6A, were also compared with the periods initially published using only the data from the original MG1-VSC (Craine et al. 2015). The results confirmed earlier expressed concerns about data aliasing in the MG survey data with significant changes in period assignment for 6 of the LPVs (see Figure 6).

3.2.2. Color relationship

The LPV stars are red giants occupying a characteristic position on the Hertzsprung-Russell diagram. Ninety-three of the MG candidates could be found in the Gaia DR2 source database, providing the absolute G, B, and R band magnitudes allowing for the evaluation of the color characteristics for 82 of them. Figure 7 shows their placement on a Color Absolute Magnitude Diagram (CMD) and comparison with the characteristics of the LPVs identified by the Gaia DR2 survey (Mowlavi 2018). The MG candidates that could be evaluated appear as might be expected for a collection of LPV stars except for three to four objects that were not as red as might be expected.

Closer inspection of the CMD suggests that the MG candidates are more concentrated in the redder region of the diagram than the average LPV. This is verified in Figure 8, which shows a detailed comparison of the distribution of MG candidates and the larger collection of Gaia DR2 LPVs. The color distributions are significantly different ($\mathrm{P}<0.00001$, KS two-sample test) with the average MG candidate having a B-R of about 5.2 compared to the Gaia DR2 collection of about 3.0 (significance $p<0.00001$, t-test for equal means). Comparing the MG survey to the ASAS-SN survey also shows a significantly different color distribution $(P=0.003)$ but the mean $B-R$ is not significantly different $(\mathrm{P}=0.226)$. Figure 8 strongly suggests that the MG survey is missing a significant number of LPVs with B-R color indices in the 1.5-4.5 range, perhaps for reasons discussed below.

Characterizing the Gaia DR2 LPVs by amplitude in periodcolor space shows a strong clustering of the higher amplitude

Figure 3. Distribution of observed periods in sky surveys.

Figure 4. Comparison of determined periods for screened objects with those from GaiaDR2 survey (Mowlavi 2018). The labeled outliers are (1) MG6A 10639637, (2) MG6A 10722590, (3) MG6A 10637601, (4) MG1A 10696051, and (5) MG6A 10644124. Gray dashed line is second harmonic for MG period and gray dot-dash line is second harmonic for Gaia period.

Figure 5. Correlation of MG periods with published GSVS periods. The labeled outlier objects are (1) MG1-1388633, (2) MG6A 10854654, (3) MG6A 10637601, and (4) MG1A 10624436. Gray dashed line is second harmonic for MG period and gray dot-dash line is second harmonic for Gaia period.

Figure 6. Correlation of originally reported periods with those determined using combined data from MG1 and MG6 surveys. The labeled outliers are (1) MG1-1376419, (2) MG6A 10660631, (3) MG6A 10620863, (4) MG11468465, (5) MG6A 10566412, and (6) MG1A 10658602. Gray dashed line is second harmonic for MG period and gray dot-dash line is second harmonic for MG1-VSC period.

Figure 7. Color magnitude diagram (MG, is the absolute Gaia G magnitude; $\mathrm{B}-\mathrm{R}$, is the Gaia B minus R band color index). All color data are from the Gaia database (Gaia Collab., et al. 2018).

Figure 8. Comparison of redness distribution of MG objects with Gaia DR2 and ASAS-SN survey objects. All color data are from the Gaia database (Gaia Collab. et al. 2018).

Figure 9. Period color diagram for the Gaia DR2 LPV in the MG1 survey strip. The color map indicates the amplitude of the object. Three visual clusters are demarcated by the dashed gray line. The line is drawn to separate the two main clusters in color, period space.

Figure 10. Period color diagram for the MOTESS LPV in the MG1 survey strip. The B-R color index is plotted as a function of the log of the period. The color map indicates the amplitude of the object. The line separating period, color space is from Equation (5).

Figure 11. Humps (change in magnitude, $\Delta \mathrm{m}$, of detrended light curve segment) from 15 LPVs with the peaks centered at 0 days. The inset shows the $\Delta \mathrm{m}$ at the peak value for each LPV as a function of color (the B-R bandpasses from Gaia measurements).

Figure 12. Mean number of observations per object as a function of RA for the MG and Gaia surveys.

Table 2. Comparison of object mean amplitudes(A) in magnitude and frequency (\%) above and below the period color line (PCL) from Figure 9 between MG and Gaia DR2 surveys.

	Above $P C L$			Below PCL		
	Source	$\%$	A		$\%$	A

${ }^{\dagger} P$, probability amplitudes are the same by student t-test.

Table 3. MG LPVs that exhibit "Humps."

Source	Identifier	Δm	Days	Phase
${ }^{\dagger} \mathrm{MG6A}$	10282350	-0.45	51	0.80
*MG1	1098444	-0.35	47	0.73
MG6A	10624347	-0.21	45	0.71
${ }^{+} \mathrm{MG6A}$	10634536	-0.50	69	0.62
MG6A	10641834	-0.32	55	0.70
${ }^{\dagger} \mathrm{MG6A}$	10654089	-0.50	61	0.74
*MG1	1334111	-0.42	50	0.79
*MG1	1339600	-0.19	45	0.78
*MG1	1341934	-0.30	34	0.70
${ }^{+} \mathrm{MG6A}$	10680158	-0.20	49	0.65
${ }^{\dagger}$ MG1A	10619638	-1.24	107	0.71
${ }^{\dagger}$ MG6A	10731840	-0.50	65	0.75
MG1A	10647664	-0.23	55	0.74
${ }^{*}$ MG1	1414532	-0.34	64	0.71
${ }^{\dagger} \mathrm{MG6A}$	10767909	-0.30	46	0.79

*Previously noted (Craine et al. 2015). ${ }^{\dagger}$ LPVs with humps in multiple cycles.
objects in a redder region compared to the low amplitude objects. A period color line (PCL) can be drawn to separate the two main clusters shown in Figure 9 defined as:

$$
\begin{equation*}
B-R=6.55 \log P-12.0 \tag{5}
\end{equation*}
$$

where P is the period in days and $\mathrm{B}-\mathrm{R}$ is the color index. There is a third apparent cluster of low period objects that also tend to have low amplitude but on the redder side of the line.

Characterizing the MG survey LPVs in a similar manner, as shown in Figure 10, reveals that the low amplitude bluer cluster is only about half as abundant (19.4\% of objects) compared to the Gaia DR2 survey (38.8% of objects), Table 2. The small number of objects in the region of the bluer cluster are mostly high amplitude and not different from the redder cluster (2.15 compared to $2.03, \mathrm{P}_{\text {same }}=0.71$). The MG survey objects in the bluer cluster, however, do have a significantly higher amplitude than those from the Gaia DR2 survey (2.15 compared to $0.36, \mathrm{P}_{\text {same }}=4.2 \times 10^{-5}$). The redder cluster has the characteristics of typical MIRA Mira type stars while the bluer cluster may represent the abundant Optical Gravitational Lensing Experiment (OGLE) Small Amplitude Red Giants (OSARGs) (Gaia Collab. et al. 2019).

3.2.3. LPVs with humps

The LPVs identified by screening the MG1 and MG6 surveys were examined to determine which might exhibit recognizable "hump" structures. The humps were best recognized in the Zwicky Transient Facility light curves of the identified LPVs (Bellm et al. 2019). Humps were found in 15 of the sample LPVs (see Table 3). Eight of the LPVs were observed to have humps in multiple cycles and are identified in Table 3 with a dagger. The best delineated hump from each of the LPVs was selected for further characterization. The region of the light curve with the hump was analyzed by fitting a high order polynomial to the points surrounding the hump to establish a baseline for detrending the data (see section 2.6 for details). The detrended data can be seen in the graphs in Appendix C. The maximum difference of the hump from the baseline is presented in the Table 3 as $\Delta \mathrm{m}$ (change in magnitude in the R band). The duration of the hump is reported as "days." The phase at which the hump peak occurred is listed as "phase" in the table. The asterisk denotes an LPV that was noted to have a hump in the original MG1 study (Craine et al., 2015).

To facilitate the comparison of the population of humps they are plotted together in Figure 11, with the hump peaks normalized to day 0 . Most of the humps are very similar in shape and magnitudes. However, the hump observed for MG1A 1785161 was noticeably brighter in magnitude ($\Delta \mathrm{m}=-1.24$ versus an average of -0.40) and duration (107 d versus an average of 56.2 d). It is intriguing that this LPV was the least red of the group $(B-R=3.39$ versus and average of 5.37).

4. Discussion

The new reduction of the MG1 and MG6 surveys has resulted in the expanded identification of LPV stars in the MG1 strip with approximated R magnitudes between ~ 12.6
and ~ 17.4 from the initial 47 (Kraus, et al. 2007) to the current 138. Review of the compilation catalogs of the GCVS (Samus et al. 2017) and AAVSO (International Variable Star Index; VSX), in addition to the large collection of automated identification of LPV candidates from the Gaia survey (Gaia Collab. et al. 2018, 2019) and the ASAS-SN survey (Kochanek et al. 2017; Shappee et al. 2014), revealed that this study has newly identified nine unique LPVs (marked with an asterisk in Appendix A Tables A1 and A2). This brings the total number of new LPV identifications from the MOTESS-GNAT survey to 56 (including those reported in (Kraus et al. 2007)).

The surveys referenced in this study each have unique characteristics which are based upon the observing strategy, equipment, and whether ground-based, or space-based. These characteristics manifest themselves in the number of observations per object and the cadence of these observations, which in turn impacts the ability to define a period. For example, comparing the MG survey with the Gaia survey shows that the MG survey has accumulated a greater number of observations per object and that the number of observations per object is a function of the RA, with the most productive period around 14 to 15 hours. The pattern of observation for the space-based Gaia satellite however is quite different (see Figure 12).

The number of observations obtained by the MG survey is an advantage although it may be offset by seasonal gaps in observing. The Gaia survey observes objects more regularly, which more closely satisfies some of the basic assumptions of key frequency analysis methods. In addition, the Gaia survey has superior precision, with typical normalized errors of about 0.1%, compared to the MG errors of about 1%. The result is, as shown in Figure 4, the general agreement in period determinations. However, there are several objects where even the Gaia data benefits from the complementary data from ground-based surveys.

The MG survey collects unfiltered imaging. The impact on color properties of identified LPVs can be observed in Figures $8-10$. These results revealed a bias in color of identified LPVs from the MG survey compared to those reported for the Gaia survey (Gaia Collab. et al. 2019). First, this bias is due to the bluer population of stars included in the Gaia LPVs (e.g., OSARGs) being fainter in the red magnitude. This results in a decreased signal signal-to to-noise ratio, increasing the variance in the MG survey photometry (which is already greater than that of the Gaia survey) and contributing to underrepresentation of some Gaia objects in the MG survey. Second, the bluer Gaia population of LPVs displays smaller amplitudes than the redder MIRA type stars, limiting their survival of the screening method employed (i.e., μ and $1 / \eta$).

The differences in the various surveys provide a strong argument for using the data in a complementary fashion to compensate for the shortcomings of each survey. Notable among surveys areis the data produced by the Zwicky Transient Facility (Bellm et al. 2019) that combines precision and large sample sizes which can be highly synergistic. The current trend of providing the ability to cross-reference the different surveys (such as at the Vizier (https://vizier.u-strasbg.fr/viz-bin/ VizieR) or Gaia (https://gea.esac.esa.int/archive/) web portals) is important for both the amateur and professional astronomer and needs to be expanded.

5. Acknowledgements

This research has made use of the International Variable Star Index (VSX) database, operated at AAVSO, Cambridge, Massachusetts, USA.

References

Astropy Collaboration. 2018, Astron. J., 156, 123.
Baluev, R. V. 2012, Mon. Not. Roy. Astron. Soc., 422, 2372.
Bellm E. C., et al. 2019, Publ. Astron. Soc. Pacific, 131, 18002.

Bradley, L., et al. 2019, astropy/photutils: v0.6 (https://doi.org/10.5281/ZENODO.2533376).
Craine, B. L., Craine, E. R., Tucker, T. A., Culver, R. B., and Anderson, R. 2021, in Proceedings for the 40th Annual Symposium of the Society for Astronomical Sciences SAS2021, eds. J. C. Martin, R. K. Buchheim, R. M. Gill, W. Green, R. Stephens, Society for Astronomical Sciences, Rancho Cucamonga, CA, 31.
Craine, E. R., Culver, R. B., Eykholt, R., Flurchick, K. M., Kraus, A. L., Tucker, R. A., and Walker, D. K. 2015, J. Amer. Assoc. Var. Star Obs., 43, 131.
Craine, E. R., Culver, R. B., Kraus, A. L., Tucker, R. A., Walker, D., and Wing, R. F. 2007, in The Society for Astronomical Sciences 26th Annual Symposium on Telescope Science, Society for Astronomical Sciences, Rancho Cucamonga, CA, 45.
Gaia Collaboration, Brown, A. G. A., et al. 2018, Astron. Astrophys., 616A, 1.

Gaia Collaboration, Eyer, L., et al. 2019, Astron. Astrophys., 623A, 110.
Kochanek, C. S., et al. 2017, Publ. Astron. Soc. Pacific, 129, 104502.

Kraus, A. L., Tucker, R. A., Thompson, M. I., Craine, E. R., and Hillenbrand, L. A. 2011, Astrophys. J., 728, 48.
Kraus, Adam L., Craine, Eric R., Giampapa, Mark S., Scharlach, W. W. G., and Tucker, Roy A. 2007, Astron. J., 134, 1488.

Mowlavi, N. 2018, Astron. Astrophys., 618A, 58.
Percy, J. R. 2007, Understanding Variable Sstars, Cambridge Univ. Press., Cambridge, 209.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1996, Numerical Recipes in Fortran 90, Cambridge Univ. Press, Cambridge.
Samus, N. N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., and Pastukhova, E. N. 2017, Astron. Rep., 61, 80.

Scargle, J. D. 1982, Astrophys. J., 263, 835.
Shappee, B. J., et al. 2014, Astrophys. J., 788, 48.
Tucker, R. A. 2007, Astron. J., 134, 1483.
VanderPlas, J. T. 2018, Astrophys. J., Suppl. Ser., 236, 16.
Virtanen, P., et al. 2020, Nat. Methods, 17, 261.
Von Neumann, J. 1941, Ann. Math. Statistics, 12, 367.
Welch, D. L., and Stetson, P. B. 1993, Astron. J., 105, 1813.
Zechmeister, M. 2019, "GLS/Python at Master-Mzechmeister/GLS," (github.com/mzechmeister/GLS/tree/master/python) accessed 12 Dec. 2022.
Zechmeister, M., and Kürster, M. 2009, Astron. Astrophys., 496, 577.

Appendix A: Tables of LPV

Table A1. Long period variable stars with high confidence periods. Objects identified as new LPVs in this study are marked with an asterisk.

Database ID			$\begin{aligned} & \text { R.A. (2000) } \\ & h \end{aligned}$	Dec. (2000)	$m M G^{l}$	Amplitude (mag)	Period (d)	Epoch ${ }^{2}$ (MJD)
MG1-VSC	MG1A	MG6A						
-	-	10125719	6.27973	3.48849	12.74	1.56	333	52018.7
-	-	10157151	6.66172	3.41147	12.55	2.47	344	52200.1
-	-	10245630	7.39174	3.16072	13.02	0.98	106	52224.6
-	-	10282350	7.86004	3.48481	11.87	1.05	327	51923.4
-	-	10313628	8.58345	2.99139	12.99	2.91	257	52219.8
-	-	10318510	8.75614	3.45367	13.67	1.24	398	52208.8
-	10412126	-	17.44638	3.46843	11.44	1.38	261	51899.2
-	10420454	10492206	17.56957	3.05137	11.84	0.90	218	52023.6
-	10424503	10496867	17.62531	3.45457	12.51	1.71	275	52356.4
-	-	10514819	17.83027	3.28816	11.99	1.70	220	51852.9
-	-	10525998	17.92806	3.03218	12.98	2.26	416	51968.1
-	-	10538157	18.01871	3.55115	12.61	1.65	147	52041.0
1098444	-	10541529	18.04222	3.08712	14.30	2.12	259	51805.2
1117392	-	10549004	18.08990	2.94400	13.00	1.97	192	51898.2
1155788	-	10566412	18.17950	2.95202	14.29	3.35	371	51827.2
-	-	10577762	18.24071	3.10995	12.44	1.30	156	51987.2
-	-	10589271	18.29673	3.66614	12.20	1.60	243	51991.4
-	-	10595142	18.32747	3.21517	13.26	1.66	274	51858.8
-	-	10596880	18.33669	3.54930	14.14	2.04	273	51943.6
-	-	10597482	18.33939	3.43108	12.59	0.97	221	52036.2
1248064	10521961	10608672	18.39271	3.41298	13.77	1.83	283	51830.3
-	-	10610820	18.40066	3.18591	13.31	1.53	210	51966.4
1258871	-	10614674	18.42071	3.67411	13.33	1.87	232	51815.5
-	-	10615458	18.42484	3.04575	14.30	1.03	230	51875.6
-	10528529	10616558	18.43054	3.21746	11.78	1.21	264	51891.3
1270097	-	-	18.44853	2.91056	13.70	2.42	234	52068.7
1270289	-	10620863	18.44899	3.22180	13.70	1.84	265	51938.1
-	-	10623473	18.45900	3.23070	13.87	1.25	165	52001.4
-	-	10624347	18.46358	3.17335	12.63	0.72	230	51915.6
1287551	-	-	18.49306	3.47056	13.53	2.45	420	51821.8
1291327	-	-	18.50289	3.39167	13.40	2.84	241	51855.4
-	-	10634536	18.51324	3.68385	13.88	1.25	214	52004.8
-	-	10637601	18.53199	3.03832	13.13	2.58	337	51903.6
-	-	10638266	18.53610	3.54179	14.25	2.51	300	52010.2
-	-	10638788	18.53956	3.68264	14.21	2.10	212	51842.1
-	-	10639637	18.54536	3.59500	14.66	1.35	190	52009.6
-	10549295	-	18.55313	2.91184	13.25	1.63	265	52000.8
-	-	10641834	18.56043	3.34669	13.00	1.40	252	51809.1
-	-	10643445	18.57031	3.41909	14.25	2.47	456	52082.5
-	-	10644124	18.57412	3.00430	14.33	2.45	390	52034.0
-	-	10646120	18.58583	3.39812	14.52	0.78	237	51885.4
1315064	10554843	10646737	18.58913	3.64086	14.56	2.00	299	51801.2
-	-	10650043*	18.60816	3.62960	13.59	2.08	481	51917.2
1326286	-	10654089	18.62912	3.65812	15.21	1.82	302	52020.4
-	-	10656955	18.64352	3.12275	12.93	2.18	381	51947.3
-	-	10658268	18.65026	3.57515	14.15	1.77	327	52044.1
-	-	10658466	18.65129	3.69543	14.66	2.49	324	51896.1
1334111	-	10659344	18.65542	3.05212	14.71	1.96	305	52040.0

Table A1. Long period variable stars with high confidence periods (cont.).

Database ID			R.A. (2000)	Dec. (2000)	$m M G^{l}$	Amplitude (mag)	Period (d)	Epoch ${ }^{2}$ (MJD)
MG1-VSC	MG1A	MG6A						
-	10566760	10659797	18.65731	3.28148	13.59	2.24	290	51772.5
1336304	-	-	18.66331	3.08861	13.96	1.70	362	51971.4
-	-	10663230	18.67001	3.64038	14.42	1.32	296	51866.2
-	-	10664502	18.67500	3.60400	12.81	1.09	251	51979.6
1339600	-	10664704	18.67601	3.42910	14.89	2.44	325	51902.2
1341934	10572125	10666775	18.68734	3.33558	14.77	2.18	237	52032.8
-	-	10666916	18.68815	3.47474	13.87	1.13	245	51912.8
-	10573832	-	18.69702	2.91197	15.37	2.74	357	51808.8
1344747	10574581	-	18.70092	3.09939	14.79	1.51	197	51863.4
-	10575668	10670584	18.70721	2.96925	15.43	2.59	141	52037.8
-	-	10671162	18.71028	3.65455	15.55	4.09	232	51931.4
-	10581264	10676905	18.74174	3.36799	15.38	0.58	292	51820.2
-	10583328	-	18.76376	2.97547	15.74	1.29	206	52023.8
-	-	10679837*	18.77205	3.47107	15.43	1.94	303	51822.6
-	10583952	-	18.77278	2.99682	14.77	2.08	315	51843.3
-	-	10679937	18.77355	3.56562	13.41	0.88	234	51854.0
-	-	10680158	18.77661	3.62856	15.84	1.59	205	51920.1
-	-	10680181*	18.77706	3.24949	15.81	1.35	218	51981.6
-	-	10681094	18.79188	2.94482	16.36	1.87	202	51877.4
-	10585083	10681185	18.79312	3.31842	15.06	1.77	275	52003.7
-	-	10682562	18.81648	3.41414	15.28	1.77	343	51891.9
-	10586841	10683307	18.82688	3.02730	16.22	2.47	260	51793.1
-	-	10683894*	18.83644	3.48245	15.25	2.40	506	51956.7
-	10589889*	-	18.88252	3.03746	14.95	1.94	586	51903.5
-	10592725	10690206	18.93340	2.99415	11.79	1.48	230	51828.9
-	10593262*	10690831*	18.94750	2.91795	13.21	2.32	270	52024.9
-	-	10691652	18.96674	3.47641	15.78	1.54	433	51727.2
-	10595225	-	18.98945	3.11190	15.67	1.36	294	51954.8
-	-	10699251	19.04595	3.44845	12.77	2.07	489	52067.5
-	-	10703054*	19.05968	3.46663	15.50	3.62	269	51834.5
1372707	-	-	19.07372	3.42139	15.51	4.17	349	52222.6
-	-	10707886	19.07564	3.36433	14.87	1.07	222	51831.0
1376419	-	-	19.08364	3.17194	15.22	0.80	165	51910.6
1379672	-	10713590	19.09167	3.55671	13.75	1.83	152	52041.5
-	10619638	-	19.09897	2.94856	14.01	3.24	522	51528.3
-	-	10717332	19.09977	3.57870	13.39	1.10	290	51893.5
-	10623199	-	19.10785	3.17282	13.73	1.54	221	51831.3
-	10624436	-	19.11093	3.44052	13.19	3.25	501	51979.7
1388413	-	10721993	19.11139	3.03939	13.34	1.57	246	51824.1
1388633	-	-	19.11197	3.28667	13.65	1.12	189	52035.4
-	10625131	10722447	19.11257	3.27738	13.77	4.97	312	51748.3
-	-	10722590	19.11300	3.42302	12.40	1.22	229	51890.8
-	10626627	-	19.11614	2.98712	14.32	2.12	423	51831.7
1391053	-	-	19.11625	2.98722	14.11	1.91	422	51838.6
-	-	10725247	19.12023	3.35178	13.09	1.36	298	51752.6
1393846	-	-	19.12111	2.95944	13.67	3.71	360	51739.5
-	10634557	-	19.13294	3.30466	15.28	2.08	246	51997.1
-	-	10731840	19.14089	3.26123	15.21	3.10	437	51777.9

Table A1. Long period variable stars with high confidence periods (cont.).

Database ID			$\begin{aligned} & \text { R.A. (2000) } \\ & h \end{aligned}$	Dec. (2000)	$m M G^{l}$	Amplitude (mag)	Period (d)	Epoch ${ }^{2}$ (MJD)
MG1-VSC	MG1A	MG6A						
1406788	10642204	-	19.15478	2.91548	13.31	2.07	299	51757.6
1410977	-	-	19.16472	2.90583	13.40	1.61	340	52001.4
1413873	10647664	10742975	19.17113	3.03156	15.13	2.09	347	52012.4
1414532	-	-	19.17256	2.96806	13.39	1.59	315	51849.6
1428501	10658602	-	19.20193	3.05442	13.29	1.92	418	51714.5
-	-	10759858	19.22240	3.30691	13.17	1.09	314	51946.7
1440964	-	-	19.23317	3.12889	13.70	1.88	409	51918.1
1444065	10670343	10764936	19.24078	3.18946	13.46	3.66	266	51908.1
-	-	10765454	19.24268	3.21684	12.72	2.08	281	51896.5
1448319	10673873	10767909	19.25080	2.91731	13.43	2.67	218	51929.0
1457857	-	-	19.27147	3.61722	13.07	1.16	282	51896.1
-	-	10776316	19.27731	3.42775	12.58	1.77	289	52008.5
1466778	10685409	10780200	19.29204	3.38649	14.25	2.00	296	51796.3
1468465	-	-	19.29603	2.92750	14.80	1.51	330	52007.2
1477416	-	10786863	19.31665	3.51341	13.35	1.63	138	52008.3
-	10696051	-	19.33167	3.37791	13.38	1.71	482	51713.4
1492532	-	-	19.35258	3.53500	14.14	2.49	213	51940.3
1496600	10704133	10798486	19.36387	3.51821	12.70	2.06	289	51843.2
-	10706234	-	19.37303	3.31331	12.60	1.55	288	51787.4
-	-	10805023	19.39115	3.32842	12.37	1.16	111	52005.2
-	10710722	10805298	19.39227	3.15070	11.99	1.56	256	51834.8
1518640	-	-	19.41364	3.62250	13.06	2.32	228	51944.0
1523972	-	-	19.42514	3.30889	13.86	2.21	272	52045.2
1540903	-	-	19.46025	3.38639	13.69	3.65	272	51902.5
-	10737124	10832301	19.49149	3.50998	13.79	2.28	300	51942.3
-	-	10854654	19.58874	3.65374	12.92	2.04	285	51775.7
-	-	10864634	19.63745	3.52213	12.37	1.94	214	52049.6
-	10777381	-	19.67851	3.20240	11.26	0.91	232	51918.7
1653368	10781632	10877309	19.70695	3.53429	13.02	3.08	232	51961.8
-	-	10897045	19.83316	3.15389	11.54	1.50	287	51848.8
1877036	-	-	20.47967	2.98500	14.15	1.87	176	51985.1

[^0]Table A2. Long period variables with ambiguous periods. The period candidates have been evaluated by determining the Vuong statistic (Baluev 2012) and found to have p-values >0.05 indicating that one of the periods could not be favored. Objects identified as new LPVs in this study are marked with an asterisk.

Database (ID)			$\begin{aligned} & \text { R.A. (2000) } \\ & h \end{aligned}$	Dec. (2000)	$m M G^{l}$	Period (d)
MG1-VSC	MG1A	MG6A				
1334664	-	10660631	18.66048	2.28784	14.10	119,175
		10691329*	18.95937	3.45862	15.39	199, 390
-	10595620*	-	18.99722	3.64549	14.49	521, 456
-	-	10693742	19.00426	2.98192	14.69	598, 516
1375418	-	-	19.08108	2.90444	15.12	149, 540
165463	10629210	-	19.12164	2.99446	13.29	73,120
-	10632033	10727558	19.12709	3.49154	13.79	152, 146, 263
1410394	-	-	19.16333	3.57500	13.73	71, 88, 90, 121
-	10671116	-	19.24264	3.50580	14.92	526, 244
1478012	-	-	19.31811	3.40917	16.44	168, 338
1545107	10731356	10826002	19.46893	3.00822	14.37	170, 302

[^1]
Appendix B: Light curves for LPV stars

Figure B1. Light curves and folded phase light curves for LPVs with high confidence periods. Red dashed line is the least squares sinusoidal fit to the data. P is the period determined using the Lomb-Scargle GLS method. (Figure continued on following pages.)

Figure B1. Light curves and folded phase light curves for LPVs with high confidence periods. Red dashed line is the least squares sinusoidal fit to the data. P is the period determined using the Lomb-Scargle GLS method (cont.). (Figure continued on following pages.)

Figure B1. Light curves and folded phase light curves for LPVs with high confidence periods. Red dashed line is the least squares sinusoidal fit to the data. P is the period determined using the Lomb-Scargle GLS method (cont.). (Figure continued on following pages.)

Figure B1. Light curves and folded phase light curves for LPVs with high confidence periods. Red dashed line is the least squares sinusoidal fit to the data. P is the period determined using the Lomb-Scargle GLS method (cont.). (Figure continued on following pages.)

Figure B1. Light curves and folded phase light curves for LPVs with high confidence periods. Red dashed line is the least squares sinusoidal fit to the data. P is the period determined using the Lomb-Scargle GLS method (cont.). (Figure continued on next page.)

Figure B1. Light curves and folded phase light curves for LPVs with high confidence periods. Red dashed line is the least squares sinusoidal fit to the data. P is the period determined using the Lomb-Scargle GLS method (cont.).

Figure B2. Light curves for LPVs with ambiguous periods. Data point before 52900 MJD are from the MG1 survey and those after 55750 MJD are from the MG6 survey.

Appendix C: Light curves for hump feature

Figure C1. The region around the "hump" of an ascending or descending arm of the periodic light curves were detrended prior to plotting to facilitate the visualization of the hump. The data are from the ZTF survey R band (Bellm et al. 2019). The red dotted line is a fourth order polynomial fit to the hump.

[^0]: ${ }^{1}$ mMG, differential magnitude unfiltered.
 ${ }^{2}$ Epoch, establishes a zero-time at one period before the first maxima in the observed data.

[^1]: ${ }^{1}$ mMG, differential magnitude unfiltered.

