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Abstract We describe two methods of singular spectrum analysis, a data driven technique, providing and using code to analyze 
example data series, and introducing the public domain R package “Rssa.” The analysis provides potential information about the 
underlying behavior of the series, stripping out noise, and is a pre-requisite for some further work such as non-linear time series 
analysis. Examples are taken from a long time series of S Per magnitude observations, and secular period changes in, and high 
frequency magnitude variations of, RZ Cas.

library code. We illustrate the methods by application to two 
long-term astronomical time series—visual observations of the 
magnitude of the semi-regular variable S Per, and observed 
minus calculated times of minimum for the eclipsing binary 
RZ Cas, together with an analysis of high-frequency CCD/
DSLR magnitude observations stripping out a signal which is 
far weaker than the noise in the data and revealing δ Scuti-type 
variations. 
 In this paper we use the r (R Foundation 2018a) statistical 
programming language and CRAN (R Foundation 2018b) 
libraries and in particular the function “ssa” in the r library 
“Rssa” (R Foundation 2018c). In the Appendix we provide code 
adapted from Huffaker et al. (2017) to perform the analysis. 
RStudio (2018) provides a convenient user interface to the r 
code and many of the charts below are taken directly from the 
RStudio platform.

2. Methodology

 We use two different approaches (“1d-ssa” and “Toeplitz-
ssa”) to the construction of the “trajectory matrix” and the 
“lagged correlation matrix” after which reconstruction of the 
series follows the same process. 

2.1. Decomposition—“1d-ssa”
 A data series taken at equal time points is first adjusted by 
removing the average value and may then be represented by 
a set of numbers (O1, O2, … , On) where n is 900 for example. 
A first column (O1, O2, … , Ok), a second column (O2, O3, … 
, Ok, Ok+1) and a third column (O3, O4, … , Ok, Ok+1, Ok+2) (and 
so on) can rather trivially be produced starting one observation 
later (a “delay” on one) for some k < n. Each of these rows 
is called a “lagged” or “Takens” vector and stacking m (for 
example, 400) such columns next to each other produces what 
is termed the “trajectory matrix,” X, where in our example X 
has 400 columns and k = 501 rows (k = n – m + 1 so that all the 
data are used). In this paper we take m to be a little under half 
the length of the time series; general advice is that m should 
be sufficiently large that we capture the main features of the 
data but less than half the length of the time series. In addition 
if a strong periodic signal is present m should be a multiple of 
the period. Golyandina and Zhigljavsky (2013) gives many 
examples where some choices of the embedding dimension are 
however very different from half the length of the series. Step 1 

1. Introduction

 Singular Spectrum Analysis (“SSA”) has gained popularity 
since the mid-1980s as a data driven rather than model driven 
method for the analysis of time series in a wide range of 
disciplines, from meteorology, to medical sciences, engineering, 
finance, and physics. Papers on SSA commenced with 
Broomhead and King (1986a, 1986b), although some ideas 
can be traced back before this. Other influential early papers 
are Fraedrich (1986), Vautard and Ghil (1989), Vautard et al. 
(1992), and Allen and Smith (1996). Development of SSA was 
paralleled by Danilov and Zhigljavsky (1997) in the former 
USSR. References to recent publications in a wide range of 
different areas can be found in Zhigljavsky (2010) and by 
various authors in two issues of Statistics and its Interface 
(2010, 2017). The review paper by Ghil et al. (2002) gives an 
extensive list of references to earlier work.
 The descriptions given here follow Golyandina et al. (2001), 
Golyandina and Zhigljavsky (2013), and Golyandina et al. 
(2018) which additionally provide many further examples from 
a variety of disciplines; the last additionally gives an extensive 
list of related research articles. SSA provides inter alia a means 
of identifying three major components of the time series to be 
analyzed. Long-term variations (“trends”) form a component 
which typically is difficult to predict without some form of 
model or understanding of the underlying process. Fourier 
analysis usually reflects this long-term behavior as a rise in 
amplitude as frequency decreases. Noise elements are those 
with no particular pattern, generally weak, and often related to 
the observation process. Most importantly we wish to extract 
the “signal,” manifested a some form of periodic variation, as 
both an end in itself and a pre-requisite for further analysis, 
for example non-linear time series analysis (NLTSA) or where 
further analysis requires a stationary data series. NLTSA has 
been used, albeit based on different techniques, in astronomical 
literature by Kollath (1990) and Buchler et al. (1996), and others 
in the context of giant variable stars. Methodology for NLTSA 
based on SSA analysis, and code, is provided by Huffaker et al. 
(2017) and code therein forms the basis of the code in this paper. 
 We describe in detail two methods of SSA along with 
code implementing these approaches. The code in Appendix 
A.1 and A.2 closely follows the mathematical methods, while 
the code in Appendix A.3 calls more efficient (but black box) 
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in the "SVD code" in the Appendix creates the trajectory matrix 
after reading in the data. (The data file should be formatted in 
column(s) as a csv file with the first row naming the column(s).) 
 The transpose of the trajectory matrix multiplied by the 
matrix gives an m × m matrix, S = XTX, whose terms are 
covariances of the observations and is called the “lagged 
correlation matrix” and where m is called the “embedding 
dimension.” Step 2 creates the lagged correlation matrix, and 
code is given in Appendix A.1.

2.2. Decomposition—“Toeplitz-ssa”
 The series must be approximately stationary for Toeplitz 
decomposition (Golyandina and Zhigljavsky (2013) section 
2.5.3). The first column of the trajectory matrix is the entire 
series, the second column as above starts at O2 but pads the end 
with zero, the third column starts at O3 and has two zeros at the 
end and so on. The lagged correlation matrix is calculated not 
as above but from the formula

Sij = ∑t = 1t = n – | i – j |Ot Ot – | i – j | / (n – | i – j |)     (1)
 
The lagged correlation matrix again has m eigenvalues and 
eigenvectors. The alternative code is given in Appendix A.2.

2.3. Singular value decomposition—“SVD”
 Any matrix of the form of S has m eigenvectors (see, for 
example, Lang 2013), EV1<=i<=m such that EVi multiplied 
by S simply stretches the EVi by a factor Li (the “eigenvalue”) 
but doesn’t change its direction. These eigenvectors also have 
the property that they are perpendicular to each other so define 
axes in m-dimensional space. We sort the eigenvectors in order 
from strongest eigenvalue to the weakest. The vectors 

Vi = XEi / √Li                (2)

(the eigenvalue term being introduced merely for normalization) 
are a projection of the time series of observations onto that 
eigenvector axis. The relative strength associated with each 
component is Li / L where L is the sum of the eigenvalues. 
Step 3 performs these calculations and in our example under 
1d-ssa V is a 501-length vector, whereas under Toeplitz it has 
length 900. Step 3 also writes the eigenvalues to a file and plots 
the relative magnitudes on a log scale.
 The trajectory matrix decomposes into X = X1 + .... Xm where 

Xi = ViEi
T√Li                (3)

and (each Xi has rank 1 and), [√Li, Ei, Vi] is referred to as 
the ith eigentriple of the SVD of X. Step 4 calculates the 
decomposition. 

2.4. Series reconstruction
 The values in each Xi are then averaged across “anti-
diagonals” (row + column = constant) to give a time series 
component {xi} of the signal where in both decomposition 
cases the component has length n (900 in our example). Note 
that in the case of 1d-ssa decomposition the averaging is over 
400 values for 400 < = i < = 500, whereas under Toeplitz 

the averaging stops at row 900 of each X. Step 5 of the  
“SVD code”calculates the individual averaged series, produces 
a graphic of the correlations between the m different time series, 
produces a graphic of a portion of the time series, and writes 
the series to a data file. The user selects how many series to 
plot in the user input section—typically starting with 40 or so 
then refining to 10 or 20.
 The “reconstructed signal(s)” we choose for further analysis 
is a sum of a subset of the component signals where the signals 
meet certain requirements—not being part of the noise, having 
similar periodicity (trend or high frequency variation) and being 
sufficiently independent from other signals, as illustrated below. 
The graphical results help in this decision making process: time 
series which are highly correlated should be grouped together, 
time series which have no correlation with other signals can 
be treated as a separate signal; time series with very different 
periodicities / patterns may be better treated separately. 
 The more efficient Rssa package can be used instead of 
the above code to perform the same calculations and graphical 
analysis, and is also illustrated in Appendix A.3. 

3. S Per magnitude variability

 S Per (GSC 03698-03073) is an M4.5-7Iae C spectral type 
(Wenger et al. 2000) Src (Kiss et al. 2006) variable star with 
period(s) variously identified as 813 ± 60 (Kiss et al. 2006); 
822 (Samus et al. 2017); 745, 797, 952, 2857 (Chipps et al. 
2004). The strong color causes significant differences in the 
estimation of magnitude by visual observers arising from 
observer dependent color response, the Purkinje effect (Purkinje 
1825), local atmospheric conditions, altitude of the star at the 
time of observation and other factors, giving rise to a significant 
level of noise related to the observation process—“extrinsic” 
noise. In addition there may be “intrinsic” random variability 
caused by the star and its environment—for example, matter 
thrown off by the star may form a non-uniform cloud causing 
variation over time in scattering of the light away from the 
observer. Data are taken from the BAA (2018) and the AAVSO 
(Kafka 2018) databases, and from the VSOLJ (2018) database 
prior to 2000. We restrict our attention to observations made 
by experienced observers (defined as those reporting over 100 
observations of the star).
 Figure 1a shows visually estimated magnitudes from 
experienced observers starting from JD 2423000 grouped 
into 878 40-day buckets. The buckets contained two empty 
buckets and values were estimated by linear interpolation 
from neighboring observations. Had the number of missing 
points been substantial, then a more sophisticated interpolation 
method, such as in Kondrashev and Ghil (2006), would  
be appropriate. 
 Applying 1d-ssa analysis Figure 1b shows a sharp drop 
in strength after the fourth eigenvector and another after the 
twelfth EV. A “scree test” (Cattell 1965a, 1965b) is often used 
to decide where signal ends and noise starts but in the case of 
very noisy data (for example visual magnitude observations 
of narrow range red variables) there may nevertheless be an 
uncorrelated but weak signal present after the strong presence of 
the noise begins and such a signal should not be ignored. Figure 
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Table 1. H and K parameters.

 Time Period (JD) H K

 < 2447000 0 0
 2447000 to 2448750 4.87–04 0
 2448750 to 2458093 (end) 0 0.853Figure 1b. S Per EV norms using 1d-ssa. 

Figure 1a. S Per visual magnitude estimates by experienced observers averaged 
in 40-day buckets.

Figure 1c. Per EV series correlations, strong correlation being indicated by a 
more solid shade.

1c shows EVs 1 and 4 strongly correlated with each other but 
not the rest; EVs 2 and 3 strongly correlated but again not with 
the rest; EVs 7, 10, and 13 are largely detached from the rest 
while remaining EVs 5 to 12 form a block. Figure 1d shows 
similar behavior in EVs 1 and 4, and similar behavior in EVs 
2 and 3, and EVs 5, 6, 8, 9, 11, 12.
 Figure 1e shows the data together with the reconstructed 
signals from EVs 1 and 4, and from EVs 2 and 3 (the mean 
magnitude has been added back to these series). It is clear that 
EVs 1 and 4 (dashed line) reflect long-term trends (in particular 
coping with a shift in magnitude described below) while EVs 
2 and 3 represent a 799-day oscillation (calculated separately). 
The figure shows (solid line) the reconstructed signal from EVs 
2,3,5,6,8,9,11,12 which shows virtually the same periodicity as 
EVs 2 and 3 alone.
 It is manifestly clear that the time series is non-stationary, 
there being a marked fall in brightness starting around 2447000 
and being maintained. The relatively abrupt change in magnitude 
is discussed in Chipps et al. (2004), and Sabin and Zijlstra 
(2006) identify similar abrupt changes in other long-period 
variable stars. We make the following adjustment in order to 
produce a time-series which is closer to a stationary one. The 
adjusted magnitude at time t, mt, is given by

mt = rawt – (t – Tt) × Ht – Kt          (4)

where raw is the observed magnitude and the parameters H and 

K are given in Table 1.
 Figure 1f shows the same data series as Figure 1a after 
adjustment described above.
 Applying Toeplitz decomposition Figure 1g shows a clearer 
distinction between different eigenvectors, and following 
similar logic to above we group EVs 1–4, and 5–7 and the 
reconstructed series are shown in Figure 1h. EV 1–4 has a strong 
period at 815 days.

4. RZ Cas period variability and δ Scuti variation

4.1. Period variability
 RZ Cas (GSC 04317-01793) is a semi-detached Algol-
type binary comprising a primary A3V star (Duerbeck and 
Hänel 1979) and a carbon (Abt and Morrell 1995) or K01V 
(Maxted et al. 1994; Rodriguez et al. 2004) star which fills its 
Roche lobe. Times of minimum (tmin) were taken from the 
Lichtenknecker database (Frank and Lichtenknecker 1987) and 
compared with expected times using a linear ephemeris and a 
period of 1.19525031 days chosen to minimize the variance of 
the differences of observed tmin minus calculated tmin (O–C). 
Data was bucketed into 100-day blocks with a small number of 
missing values linearly interpolated between neighboring values 
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Figure 1d. S Per 1d-ssa first 16 individual EV time series, initial 200 data points – to identify the broad type of pattern.

Figure 1e. S Per unadjusted data and reconstructed signals from EV groups 
using 1d-ssa.

Figure 1f. S Per adjusted data.
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Figure 1h. S Per adjusted data and reconstructed signals from EV groups.

Figure 2a. RZ Cas O-C bucketed into 100-day intervals.

Figure 2b. RZ Cas O-C first 10 EV correlations.

Figure 1g. S Per EV norms using Toeplitz decomposition.

and is shown in Figure 2a.
 1d-ssa decomposition was applied, and inspection showed 
a typical noise pattern after EV6. The correlation matrix and 
time series charts (and eigenvalue magnitudes) and are shown 
in Figures 2b (first 10 EVs) and 2c (first 9 EVs).
 From these two charts we see EVs 1 and 2 have a small 
correlation with EV 5 and similar periodicity (and comprise over 
90% of the data variation), EVs 3 and 4 are largely separate 
(comprising 5%) and a similar period but shorter than EVs 1 
and 2, EVs 6 and 7 (and several others also with significant 
correlation) seem to be correcting for abnormalities at the start 
of the period, and EV 6 and beyond may be regarded as the 
noise. Figure 2d shows the data and reconstructed signals. 
 The signal EV3–4 is intriguing: it should be borne in mind 
that the reconstructed signal is merely an average of the original 
data series (albeit a very complicated one)—at no point are 
harmonics used in the calculation, yet this signal is at first glance 
similar to a sine wave with period just of approximately 23 years. 
A closer look shows the amplitude of the signal is decreasing 
and the wavelength is not constant, although this could be a 
corruption caused by the original noisy data. Furthermore it is 
known (for example Allen and Smith 1996; Greco et al. 2015) 
that noise other than white noise—in particular noise related to 
an autoregressive process—can generate spurious periodicities. 
Further testing, which is beyond the scope of the current paper, 

is required to determine whether the observed signal has arisen 
by chance or from a more complicated underlying non-linear 
process. If this was indeed harmonic and caused by an orbiting 
third body then the semi-amplitude of the signal implies an orbit 
for the main components about a center of mass of the system, 
and the joint masses of the eclipsing stars would imply a mass 
of under 0.2 solar mass for an orbiting body. 

4.2. δ Scuti-type variation
 High frequency CCD observations by G. Samolyk from 
the AAVSO database were analyzed as follows. Differences 
from model magnitudes (using a Wilson-Devinney eclipse 
model (see, for example, Kallrath and Milone 2009)) were 
calculated and analyzed using 1d-ssa decomposition (Figures 
3a and 3b). EVs1–4 and 7, 8 represent the slow deviations, and 
a relatively strong EV5–6 is independent of other signals apart 
from the weak 14 and 15, and shows a clear periodicity of 22.4 
minutes—in good agreement with Ohshima et al. (2001) and 
Rodriguez et al. (2004). The very high frequency variations in 
EVs 9–12 may be instrumentation related. Figure 3c shows the 
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Figure 2c. RZ Cas first 9 individual EV time series, initial 200 data points—to identify the broad type of pattern.

Figure 2d. RZ Cas O–C and reconstructed signals from EV groups.

Figure 3a. RZ Cas high-frequency CCD data, EV correlation matrix, first 16 EVs.
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data and reconstructed signal.
 A second series of relatively noisy DSLR data shows 
virtually the same periodicity—EV34 shows periodicity of 21.1 
minutes. DSLR data by Screech from the BAA database taken 
through a secondary minimum have been analyzed simply by 
removing the mean then applying 1d-ssa decomposition and 
analysis, the result being shown in Figure 3d.

5. Conclusions

 In this paper we have given code corresponding closely 
to the formulae behind singular spectrum analysis as well 
as code to call the corresponding more efficient “black box” 

Figure 3c. RZ Cas high-frequency CCD data and reconstructed signal from 
EV groups.

Figure 3d. RZ Cas high-frequency DSLR data and reconstructed signals from 
EV groups.

Figure 3b. RZ Cas high-frequency CCD data, first 16 EV time series.

functionality in the Rssa r code package. We have shown how 
to use the key intermediate output—eigenseries correlation plots 
and eigenseries time series plots together with their relative 
strengths—to reconstruct meaningful time series components—
trend, periodic and residual noise—of the original time series. 
As an interactive data driven method this is more revealing, 
and capable of extracting more information, that typical model 
driven methods. The S Per data example is one of simple 
periodicity discovery and is included to illustrate SSA and its 
application. The RZ Cas O–C series discovers a periodic signal 
in the times of minimum and hints at a possible third body, while 
the high frequency data illustrate how the δ Scuti variability 
can be extracted from relatively noisy data exhibiting strong 
long-term variation throughout the data sample.
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Appendix A: code examples

A.1. SVD code
 Notes: 
 1. We recommend the use of “rstudio” (2018) which 
provides a simple and highly efficient way of handling r code 
and results. 
 2. The user needs to set the path according to where the r 
system has been installed—see the code comment below.
 3. The packages “tseriesChaos” and “Rssa” need to be 
installed from the “install” tab under “packages” in rstudio.
 4. The code should be saved as “XXXX.R” in the “User 
Defined Function” subdirectory of r when “XXXX” is a user 
chosen name.
 5. Steps 1–6 are present to show what is going on behind 
the scenes in Step 7—in practical use only Step 7 is needed.
 6. Comments are in italics, code in bold.

# Code: Basic SSA - matrix decomposition and grouping 
rm(list=ls(all=TRUE))

# DEFINE YOUR PATH HERE
setwd("C:/Users/Geoff/Documents/R/data")
# END DEFINE YOUR PATH HERE

# User-defined function for averaging of minor diagonals—from Huffaker et 
al. (2017) code 6.6
diag.ave<-function(mat, rowCount, colCount) {
 hold<-matrix(0,(rowCount+(colCount-1)))
 for(i in 1:(rowCount+(colCount-1))) {
 if(i==1) {d<-mat[1,1]}
 
 if(i>1 & i<=colCount) {d<-diag(mat[i:1,1:i])}
 
 if(i>colCount & i<=rowCount) {d<-diag(mat[i:(i-(colCount-
1)),1:colCount])}
 
 if(i>rowCount & i<(rowCount+(colCount-1))) {
 d<-diag(mat[rowCount:(i-(colCount-1)),(i-(rowCount-1)):colCount])}
 
 if(i==(rowCount+(colCount-1))) {d<-mat[rowCount,colCount]}
 
 d.ave<-mean(d) #average minor diagonals
 hold[i,]<-d.ave
 } #end loop
 return(hold)
} #end function

# START START START START START START START START START START 
START START
# USER INPUT USER INPUT USER INPUT USER INPUT USER INPUT 
USER INPUT USER 

# Read in data
ts<-read.csv("RZ Cas O minus C.csv")
x<-ts$OmCadj #x has ndata rows and 1 col 

# dimension (number of columns) of the trajectory matrix
L = 200
# choose the number of eigenvectors (and reconstructed series) required
outputVecCount = 20 

# end USER INPUT USER INPUT USER INPUT USER INPUT USER INPUT 
USER INPUT

# step 1: construct trajectory matrix

library(tseriesChaos)
TM = embedd(x,L,1) #1=delay

ndata=length(TM[,1])

# step 2: lagged covariance matrix

lagCM = t(TM) %*% TM

# step 3: eigensystem of lagCM

eigensys = eigen(lagCM,symmetric=TRUE)
eigenvals = eigensys$values
eigenvecs = eigensys$vectors
eigenSet = cbind(eigenvals,eigenvecs)

orderedSet = order(eigenSet[,1],decreasing=TRUE)

ES = eigenSet[order(eigenSet[,1],decreasing=TRUE),] #sort in order of 
eigenvalues

# calculate relative strength of EVs

sumLambdas = sum(eigenvals)
relativeEV = matrix(0,nrow=outputVecCount,ncol=1)
for (i in 1:outputVecCount) {relativeEV[i] = abs(ES[i,1])/sumLambdas}

write(relativeEV[1:outputVecCount], file = "BasicSSAdata.csv",
 ncolumns = outputVecCount,append = FALSE, sep = ",")

# PLOT: relative eigenvalue plots

plot(relativeEV[1:outputVecCount],log="y",type="b",col="black",lwd=2)

# calculate left eigenvectors of the trajectory matrix

left = matrix(0,nrow=ndata,ncol=outputVecCount)
for(i in 1:outputVecCount){
 left[,i] = TM %*% ES[,1+i]/sqrt(ES[i,1])
}

# step 4: now get the decomposition of the TM (trajectory matrices projected 
# on important eigenvectors)

X = array(1:ndata*L*outputVecCount,dim=c(ndata,L,outputVecCount))
for(i in 1:outputVecCount){
 X[,,i] = sqrt(ES[i,1]) * left[,i] %*% t(ES[,1+i])
}

# step 5: reconstructed individual time-series (diagonal averaging)

actualNdata = ndata+L-1
recon = matrix(0,nrow=actualNdata,ncol=outputVecCount)
for (i in 1:outputVecCount) {
 recon[,i] = diag.ave(X[,,i],ndata,L)
}

# PLOT: plot of correlations 

w<-cor(recon,y=NULL,use="everything",method="pearson")
library(corrplot)
corrplot(w,method="square")

# PLOT: miniplot of recon time series related to each EV

plotRow = round(sqrt(outputVecCount))
par(mfrow=c(plotRow,outputVecCount/plotRow))
for (i in 1:outputVecCount){
 plot(recon[,i],xlim=c(1,200),xlab="",
 ylab=paste("series ",toString(i),"; ",toString(round(1000*relativeEV
[i])/10),"%"),
 type="l",col="black",lwd=2) #plot 1st 20 time series for 200 periods
}
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# write time series output

 write(t(recon), file = "BasicSSAdata.csv",#tmp
 ncolumns = outputVecCount,append = TRUE, sep = ",")

A.2. Toeplitz code
 Steps 1 and 2 in the above are replaced with the following:

#step 1: construct trajectory matrix
zero = seq(0,0,length.out=ndata) #used for padding
TM = matrix(0,nrow=ndata,ncol=L)
TM = cbind(x,append(x[2:ndata], zero[1:1],after=ndata-1))
for(j in 3:L){
 TM = cbind(TM,append(x[j:ndata],zero[1:j-1],after=ndata-j+1))
}

#step 2: lagged covariance matrix
lagCM = matrix(data=NA,nrow=L,ncol=L)
for(i in 1:L){
 for(j in 1:L){
 xsum = 0
 for (t in 1:(ndata-abs(i-j))){
 xsum = xsum + x[t]*x[(t+abs(i-j))]
 }
 xsum = xsum / (ndata-abs(i-j))
 lagCM[i,j] <- xsum
 }
}

A.3. Rssa code

#Code 6.9 from Huffaker et al. (2017), SSA: matrix decomposition and grouping 
diagnostics
rm(list=ls(all=TRUE))

#Read in data
setwd("C:/Users/Geoff/Documents/R/data")
ts<-read.csv("RZ Cas O minus C.csv");
x<-ts$OmCadj
n = length(x)

#SSA Decomposition
#load Rssa R library from Install Packages
library(Rssa)
L=200
s<-ssa(x,L,kind="1d-ssa") #run Rssa 1d-ssa
#s<-ssa(x,L,kind="toeplitz-ssa") # alternatively run Rssa Toeplitz-ssa

#Run grouping diagnostics to group eigentriplets
 #First visual diagnostic: Eigenspectrum
plot(s,numvalues=20,col="black",lwd=2) #plot 1st 20 largest
eigenvalues<-plot(s,numvalues=20,col="black",lwd=2) 

 #Second visual diagnostic: Eigenvector plots
plot(s,type="vectors",idx=1:20,xlim=c(1,200),col="black",lwd=2) #plot 
1st 20 for 300 periods

 #Weighted correlation matrix
plot(w<-wcor(s,groups=c(1:19))) #1st 20 eigentriplets
w.corr.res<-wcor(s,groups=c(1:20)) #table for 1st 10 eigentriplets

# write time series output
r.1<-reconstruct(s,groups=li
st(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)) 
recon.1<-r.1$F1
recon.2<-r.1$F2
recon.3<-r.1$F3
recon.4<-r.1$F4
recon.5<-r.1$F5
recon.6<-r.1$F6
recon.7<-r.1$F7
recon.8<-r.1$F8
recon.9<-r.1$F9
recon.10<-r.1$F10
recon.11<-r.1$F11
recon.12<-r.1$F12
recon.13<-r.1$F13
recon.14<-r.1$F14
recon.15<-r.1$F15
recon.16<-r.1$F16
recon.17<-r.1$F17
recon.18<-r.1$F18
recon.19<-r.1$F19
recon.20<-r.1$F20

tmp = vector("numeric",20)
write(c(1:20), file = "BasicRssadata.csv",ncolumns = 20,append = FALSE, 
sep = ",")
for (i in 1:n) {
 tmp = c(recon.1[i],recon.2[i],recon.3[i],recon.4[i],recon.5[i],
 recon.6[i],recon.7[i],recon.8[i],recon.9[i],recon.10[i],
 recon.11[i],recon.12[i],recon.13[i],recon.14[i],recon.15[i],
 recon.16[i],recon.17[i],recon.18[i],recon.19[i],recon.20[i])
 write(t(tmp), file = "BasicRssadata.csv",ncolumns = 20,append = TRUE, 
sep = ",")
}


