# First Precision Photometric Observations and Analyses of the Totally Eclipsing, Solar Type Binary V573 Pegasi

# **Ronald G. Samec**

Faculty Research Associate, Pisgah Astronomical Research Institute, 1 PARI Drive, Rosman, NC 28772; ronaldsamec@gmail.com

# **Daniel B. Caton**

Dark Sky Observatory, Department of Physics and Astronomy, Appalachian State University, 525 Rivers Street, Boone, NC 28608

# Danny R. Faulkner

Johnson Observatory, 1414 Bur Oak Court, Hebron, KY 41048

Received April 26, 2018; revised May 25, 2018; accepted May 28, 2018

Abstract. CCD VR<sub>cl</sub> light curves of V573 Peg were taken 26 and 27 September and 2, 4, and 6 October, 2017, at the Dark Sky Observatory in North Carolina with the 0.81-m reflector of Appalachian State University. Five times of minimum light were calculated, two primary and three secondary eclipses, from our present observations. The following quadratic ephemeris was determined from all available times of minimum light: JD HelMinI=2456876.4958(2)d+0.41744860(8)×E-2.74(12)×10<sup>-10</sup>×E<sup>2</sup>, where the parentheses hold the ± error in the last two digits of the preceding value. A 14-year period study (covered by 24 times of minimum light) reveals a decreasing orbital period with high confidence, possibly due to magnetic braking. The mass ratio is found to be somewhat extreme,  $M_2/M_1=0.2629\pm0.0006(M_1/M_2=3.8)$ . Its Roche Lobe fill-out is ~25%. The solution had no need of spots. The component temperature difference is about 130 K, with the less massive component as the hotter one, so it is a W-type W UMa Binary. The inclination is  $80.4\pm0.1^{\circ}$ . Our secondary eclipse shows a time of constant light with an eclipse duration of 24 minutes. More information is given in the following report.

#### 1. Introduction

Studies of solar-type eclipsing binaries continue to yield important information on their evolution and nature of orbits. These investigations possibly link detached configurations to semidetached V1010 Oph types (Angione and Sievers 2013) and Algol types to contact binaries, to overcontact binaries, and to red novae (Tylenda and Kamiński 2016) and fast rotating A-type (Guinan and Bradstreet 1988) and FK Comae single stars. Many O–C plots of these binaries are found to be sinusoidal indicating the presence of an orbiting third body. A parabolic O–C plot indicates a continuously decreasing (decaying) or increasing orbital period. V573 Pegasi is a binary in the later case in a near extreme mass ratio configuration with a decaying orbital period.

#### 2. History and observations

The variable was discovered by Maciejewski *et al.* (2004) in a list of 28 new variable stars (SAVS 231034+314253). Their light curve is shown as Figure 1.

They give a V-magnitude of 12.34, an amplitude of V=0.51 mag, and the ephemeris:

JD Hel MinI = 
$$2452885.2469 + 0.417461(3)d \times E$$
, (1)

was given as well as an EW designation. This variable was listed in "A Catalog of 1022 Bright Contact Binary Stars" (Gettel *et al.* 2006). Timings of minimum light have been given by Gürol *et al.* (2007), Paschke (2009), Nelson (2009), Gökay *et al.* (2012), Demircan *et al.* (2012), and Hübscher (2014).

The system was listed in "The 80th Name-List of Variable Stars" (Kazarovets *et al.* 2013).

This system was observed as a part of our professional collaborative studies of interacting binaries at Pisgah Astronomical Research Institute from data taken from Dark Sky Observatory (DSO) observations. The observations were taken by D. Caton. Reduction and analyses were done by Ron Samec. Our 2017 VR I light curves were taken at Dark Sky Observatory 26 and 27 September and 2, 4, and 6 October 2017 with a thermoelectrically cooled (-35° C) 2KX2K FLI camera and VR I filters. Individual observations included 328 in V, 338 in R<sub>2</sub>, and 348 in I<sub>2</sub>. The probable error of a single observation was 7 mmag in R<sub>c</sub> and I<sub>c</sub>, as well as 8 mmag in V. The nightly Comparison-Check star values stayed constant throughout the observing run with a precision of 3 mmag in V and R, and 3.5 mmag in I<sub>a</sub>. Exposure times varied from 25-30s in V and 25s in  $R_{a}$  and  $I_{a}$ . To produce the images, nightly images were calibrated with 25 bias frames, at least five flat frames in each filter, and ten 300-second dark frames.



Figure 1. SAVS discovery light curve of SAVS 231034+314253 (V573 Peg). From Maciejewski *et al.* (2004).

The VR<sub>c</sub>I<sub>c</sub> observations are given in Table 1 as HJD vs Magnitude. Figures 2a and b show two sample light curves taken September 27 and October 2, 2017.

# 3. Finding chart

The finding chart, given here for future observers, is shown as Figure 3. The coordinates and magnitudes of the variable star, comparison star, and check star are given in Table 2.

## 4. Period Study

Five mean times (from VR<sub>c</sub>I<sub>c</sub> data) of minimum light were calculated from our present observations, three primary and two secondary eclipses:

HJD Min I = 2456876.49380 ± 0.0006, 2458023.6420 ± 0.0011, 2458028.65221 ± 0.0021

HJD Min II = 2458022.5991 ± 0.0011, 2458023.8510 ± 0.0010, 2458028.86081 ± 0.0005.

A least squares minimization method (Mikulášek *et al.* 2014) was used to determine the minima for each curve. VR<sub>L</sub> results were averaged to determine each time of minimum light. All minima were weighted as 1.0 in the period study.

In addition, nineteen times of minimum light were collected from literature and listed in Table 3. A weighted least squares program was used to determine linear and quadratic ephemerides from these data:

```
MinI = JD Hel 2456876.4944 (11) + 0.41745021 (25) d \times E (2)
MinI = JD Hel 2456876.4958 (3)
+0.41744860 (12) d \times E - [2.7(2) \times 10^{-10}] \times E^{2} (3)
```

The residuals from the linear term of Equation 3 is shown with the quadratic fit in Figure 4.

This period study covers a time interval of over 14 years and shows an orbital period that is decreasing (at the 13-sigma level). A possible cause of this effect is magnetic braking that occurs as plasma winds leave the system on stiff, but rotating and spreading, dipole magnetic field lines. This causes a continuous angular momentum loss. This scenario is typical for overcontact binaries which eventually coalesce, albeit, in a catastrophic way, producing red novae (Tylenda and Kamiński 2016). The residuals from the linear term of Equation 3 is shown with the quadratic fit in Figure 4. Both the linear and quadratic O–C residuals are given in Table 3.

## 5. Light curve characteristics

The VR<sub>c</sub> and I<sub>c</sub> curves and V–R<sub>c</sub>, V–I<sub>c</sub> color curves are shown in Figures 5a and b. These are phased with Equation 2. Light curve amplitudes and the differences in magnitudes at various quadratures are given in Table 4. The curves are of good precision, averaging somewhat better than 1% photometric precision. The amplitude of the light curve varies from



Figure 2a. V573 Peg. Observations taken 2 October 2017.



Figure 2b. V573 Peg. Observations taken 27 September 2017.



Figure 3. Finding chart, V573 Peg (V), Comparison (C), and Check (K).



Figure 4. The residuals from the quadratic term of Equation 3 in the period study of V573 Peg.



Figure 6a. V573 Peg, geometrical Figure 6b. V573 Peg, geometrical representation at phase 0.00. representation at phase 0.25.





Figure 6c. V573 Peg, geometrical Figure 6d. V573 Peg, geometrical representation at phase 0.50. representation at phase 0.75.



Figure 5a.  $VR_c$  magnitude light curves of V573 Peg phased by Equation 2.



Figure 5b. R.I. magnitude light curves of V573 Peg phased by Equation 2.



Figure 7a. V573 Peg, V, R<sub>c</sub> normalized fluxes overlaid by our solution.



Figure 7b. V573 Peg, R<sub>c</sub>, I<sub>c</sub> normalized fluxes overlaid by our solution.

0.47–0.46 mag in V to I<sub>c</sub>. The O'Connell effect, an indicator of spot activity, averages less than the noise level, 0.002–0.004 mag, not necessarily indicating the presence of star spots. The differences in minima are negligible, 0.005–0.008 mag, indicating overcontact light curves in thermal contact. A time of constant light, a total eclipse, occurs at our secondary minima.

## 6. Temperature

The 2MASS J–K equals  $0.314\pm0.049$  for the binary. The APASS B–V equals 0.59. These correspond to a ~F7±2V spectral type, which yields a temperature of 6250K±300K. Fast rotating binary stars of this type are noted for having convective atmospheres, so the binary is of solar type.

## 7. Light curve solution

The VR<sub>e</sub>I<sub>c</sub> curves were pre-modeled with BINARY MAKER 3.0 (Bradstreet and Steelman 2002). Fits were determined in VR<sub>e</sub>I<sub>c</sub> filter bands which were very stable. The solution was that of an overcontact eclipsing binary. The parameters were then averaged and input into a three-color simultaneous light curve calculation using the Wilson-Devinney Program (Wilson and Devinney 1971; Wilson 1990, 1994; Van Hamme and Wilson 1998). The computation was computed in Mode 3 and converged to a solution. Convective parameters, g = 0.32, A = 0.5 were used.

An eclipse duration of ~24 minutes was determined for our secondary eclipse (phase 0.5) and the light curve solution. The less massive component is the hottest, making the system a W-type W UMa contact binary. Since the eclipses were total, the mass ratio, q, is well determined with a fill-out of 24.5 (1)%. The light curve solution is given in Table 5. The Roche Lobe representation at quarter orbital phases is shown in Figures 6a, b, c, and d and the normalized fluxes overlaid by our solution of V573 Peg in VR<sub>c</sub>I<sub>c</sub> are shown in Figures 7a and b.

## 8. Discussion

V573 Peg is an overcontact W U Ma binary. The system has a rather extreme mass ratio of ~0.26, and a component temperature difference of ~130 K. No spots were needed in the modeling. The Roche Lobe fill-out of the binary is ~24.5% with an inclination of ~80 degrees. Its photometric spectral type indicates a surface temperature of ~6250 K for the primary component, making it a solar type binary. Such a main sequence star would have a mass of ~1.25 M<sub>o</sub> and the secondary (from the mass ratio) would have a mass of ~0.33 M<sub>o</sub>, making it very much undersized. The W-type configuration is thought to be due to a surface saturated with solar phenomena on the primary component, suppressing its temperature. The secondary component has a temperature of ~6379 K.

# 9. Conclusion

The period study of this overcontact W UMa binary has a 14-year duration. The orbital period is found to be increasing at about the 13-sigma level. The system is of solar type and this is hinted at by the fact that the smaller component is the hotter one. This "W-type" phenomena is probably due to spots saturating the primary component with its deep convective envelope. The strong period decrease is probably due to magnetic braking. If this is the case, the system will slowly coalesce over time with the mass ratio becoming more extreme, as it loses angular momentum. In time, if this continues, one would expect that the binary will become a rather normal, fast rotating, single ~F2V type field star after a red nova coalescence event and some mass loss (Tylenda and Kamiński 2016).

#### 10. Acknowledgement

Dr. Samec wishes to thank Dr. Danny Faulkner for his continued help and friendship through the years.

#### References

- Angione, R. J., and Sievers, J. R. 2013, *Publ. Astron. Soc. Pacific*, **125**, 41.
- Bradstreet, D. H., and Steelman, D. P. 2002, Bull. Amer. Astron. Soc., 34, 1224.
- Demircan, Y., et al. 2012, Inf. Bull. Var. Stars, No. 6041, 1.
- Gettel, S. J., Geske, M. T., and McKay, T. A. 2006, *Astron. J.*, **131**, 621.
- Gökay, G., et al. 2012, Inf. Bull. Var. Stars, No. 6039, 1.
- Guinan, E. F., and Bradstreet, D. H. 1988, in *Formation and Evolution of Low Mass Stars*, eds. A. K. Dupree, M. T. V. T. Lago, NATO Advanced Science Institutes (ASI) Ser. C, Vol. 241, Kluwer, Dordrecht, Netherlands, 345–375.
- Gürol, B., et al. 2007, Inf. Bull. Var. Stars, No. 5791, 1.
- Høg, E., et al. 2000, Astron. Astrophys., 355, L27.
- Hübscher, J. 2014, Inf. Bull. Var. Stars, No. 6118, 1.
- Kazarovets, E. V., Samus, N. N., Durlevich, O. V., Kireeva, N. N., and Pastukhova, E. N. 2013, *Inf. Bull. Var. Stars*, No. 6052, 1.
- Maciejewski, G., Czart, K., and Niedzielski, A. 2004, *Inf. Bull.* Var. Stars, No. 5518, 1.
- Mikulášek, Z., Chrastina, M., Liška, J., Zejda, M., Janík, J., Zhu, L.-Y., and Qian, S.-B. 2014, *Contrib. Astron. Obs. Skalnaté Pleso*, **43**, 382.
- Nelson, R. H. 2009, Inf. Bull. Var. Stars, No. 5875, 1.
- Paschke, A. 2009, Open Eur. J. Var. Stars, 116, 1.
- Skrutskie, M. F., et al. 2006, Astron. J., 131, 1163.
- Tylenda, R., and Kamiński, T. 2016, *Astron. Astrophys.*, **592A**, 134.
- U.S. Naval Observatory. 2012, UCAC-3 (http://www.usno. navy.mil/USNO/astrometry/optical-IR-prod/ucac).
- Van Hamme, W. V., and Wilson, R. E. 1998, *Bull. Amer. Astron. Soc.*, **30**, 1402.
- Wilson, R. E., and Devinney, E. J. 1971, *Astrophys. J.*, **166**, 605.
- Wilson, R. E. 1990, Astrophys. J., 356, 613.
- Wilson, R. E. 1994, Publ. Astron. Soc. Pacific, 106, 921.

Table 1. V573 Peg observations,  $\Delta V$ ,  $\Delta R_c$ , and  $\Delta I_c$ , variable star minus comparison star.

| $\Delta V$       | <i>HJD</i><br>2458000+ | $\Delta V$ | HJD<br>2458000+ |
|------------------|------------------------|------------|-----------------|------------|-----------------|------------|-----------------|------------|-----------------|
| -0.365           | 22.5156                | -0.385     | 23.7271         | -0.391     | 23.7350         | -0.190     | 23.8924         | 0.070      | 28.6446         |
| -0.350           | 22.5224                | -0.382     | 23.7311         | -0.391     | 23.7390         | -0.192     | 23.8940         | 0.077      | 28.6472         |
| -0.323           | 22.5285                | -0.391     | 23.7350         | -0.393     | 23.7430         | -0.210     | 23.8956         | 0.075      | 28.6497         |
| -0.316           | 22.5321                | -0.391     | 23.7390         | -0.382     | 23.7470         | -0.222     | 23.8972         | 0.077      | 28.6523         |
| -0.310           | 22.5356                | -0.393     | 23.7430         | -0.385     | 23.7510         | -0.240     | 23.8988         | 0.077      | 28.6548         |
| -0.280           | 22.5425                | -0.382     | 23.7470         | -0.385     | 23.7549         | -0.287     | 28.5012         | 0.072      | 28.6574         |
| -0.258           | 22.5458                | -0.385     | 23.7510         | -0.381     | 23.7589         | -0.287     | 28.5035         | 0.076      | 28.6599         |
| -0.239           | 22.5491                | -0.385     | 23.7549         | -0.368     | 23.7029         | -0.301     | 28.5058         | 0.058      | 28.0025         |
| -0.199           | 22.5541                | -0.368     | 23.7589         | -0.202     | 23.7909         | -0.303     | 28.5081         | 0.031      | 28.0030         |
| -0.175           | 22.5574                | -0.368     | 23 7969         | -0.233     | 23.8001         | -0.319     | 28.5127         | 0.020      | 28.6701         |
| -0.108           | 22.5670                | -0.255     | 23.7985         | -0.236     | 23.8028         | -0.326     | 28.5150         | -0.031     | 28.6727         |
| -0.062           | 22.5712                | -0.247     | 23.8001         | -0.227     | 23.8044         | -0.335     | 28.5173         | -0.047     | 28.6752         |
| -0.012           | 22.5754                | -0.236     | 23.8028         | -0.202     | 23.8060         | -0.344     | 28.5196         | -0.082     | 28.6778         |
| 0.045            | 22.5813                | -0.227     | 23.8044         | -0.196     | 23.8076         | -0.351     | 28.5219         | -0.102     | 28.6803         |
| 0.076            | 22.5855                | -0.202     | 23.8060         | -0.190     | 23.8092         | -0.347     | 28.5242         | -0.130     | 28.6829         |
| 0.090            | 22.5897                | -0.196     | 23.8076         | -0.173     | 23.8108         | -0.354     | 28.5265         | -0.150     | 28.6854         |
| 0.073            | 22.5957                | -0.190     | 23.8092         | -0.157     | 23.8124         | -0.373     | 28.5287         | -0.167     | 28.6880         |
| 0.074            | 22.5999                | -0.173     | 23.8108         | -0.148     | 23.8140         | -0.367     | 28.5310         | -0.189     | 28.6905         |
| 0.082            | 22.6041                | -0.15/     | 23.8124         | -0.135     | 23.8156         | -0.3/4     | 28.5333         | -0.207     | 28.6931         |
| 0.083            | 22.0095                | -0.148     | 23.8140         | -0.113     | 23.81/2         | -0.379     | 28.5350         | -0.222     | 28.0900         |
| 0.033            | 22.0137                | -0.133     | 23.8150         | -0.100     | 23.8188         | -0.382     | 28.5379         | -0.232     | 28.0985         |
| -0.028           | 22.6229                | -0.100     | 23.8188         | -0.068     | 23.8220         | -0.381     | 28.5425         | -0.276     | 28.7036         |
| -0.076           | 22.6271                | -0.085     | 23.8204         | -0.061     | 23.8236         | -0.388     | 28.5448         | -0.278     | 28,7061         |
| -0.103           | 22.6313                | -0.068     | 23.8220         | -0.041     | 23.8252         | -0.386     | 28.5471         | -0.302     | 28.7087         |
| -0.155           | 22.6365                | -0.061     | 23.8236         | -0.019     | 23.8269         | -0.389     | 28.5494         | -0.307     | 28.7112         |
| -0.338           | 22.6766                | -0.041     | 23.8252         | -0.009     | 23.8285         | -0.384     | 28.5517         | -0.317     | 28.7138         |
| -0.335           | 22.6808                | -0.019     | 23.8269         | 0.010      | 23.8301         | -0.392     | 28.5540         | -0.330     | 28.7163         |
| -0.383           | 22.6850                | -0.009     | 23.8285         | 0.028      | 23.8317         | -0.385     | 28.5563         | -0.335     | 28.7189         |
| -0.376           | 22.6918                | 0.010      | 23.8301         | 0.040      | 23.8335         | -0.395     | 28.5586         | -0.345     | 28.7214         |
| -0.374           | 22.6922                | 0.028      | 23.8317         | 0.042      | 23.8351         | -0.385     | 28.5609         | -0.353     | 28.7240         |
| -0.395           | 22.0904                | 0.040      | 23.8333         | 0.069      | 23.8307         | -0.389     | 28.3032         | -0.301     | 28.7205         |
| -0.380           | 22.7022                | 0.042      | 23.8351         | 0.077      | 23.8383         | -0.384     | 28.5055         | -0.308     | 28.7291         |
| -0.402<br>-0.383 | 22.7004                | 0.007      | 23.8383         | 0.069      | 23.8378         | -0.373     | 28.5700         | -0.372     | 28,7341         |
| -0.343           | 23.5637                | 0.077      | 23.8398         | 0.078      | 23.8430         | -0.363     | 28.5723         | -0.382     | 28.7367         |
| -0.334           | 23.5676                | 0.069      | 23.8414         | 0.080      | 23.8446         | -0.361     | 28.5746         | -0.386     | 28.7392         |
| -0.319           | 23.5725                | 0.078      | 23.8430         | 0.101      | 23.8462         | -0.356     | 28.5769         | -0.390     | 28.7418         |
| -0.308           | 23.5765                | 0.080      | 23.8446         | 0.076      | 23.8478         | -0.333     | 28.5792         | -0.397     | 28.7443         |
| -0.284           | 23.5804                | 0.101      | 23.8462         | 0.074      | 23.8494         | -0.346     | 28.5815         | -0.397     | 28.7469         |
| -0.268           | 23.5854                | 0.076      | 23.8478         | 0.085      | 23.8510         | -0.334     | 28.5838         | -0.395     | 28.7494         |
| -0.033           | 23.6188                | 0.074      | 23.8494         | 0.075      | 23.8526         | -0.321     | 28.5861         | -0.399     | 28.7520         |
| 0.009            | 23.6228                | 0.085      | 23.8510         | 0.078      | 23.8542         | -0.321     | 28.5884         | -0.397     | 28.7545         |
| 0.041            | 23.6267                | 0.075      | 23.8526         | 0.073      | 23.8558         | -0.300     | 28.5907         | -0.399     | 28.7571         |
| 0.074            | 23.0317                | 0.078      | 23.8542         | 0.092      | 23.8574         | -0.292     | 28.5950         | -0.398     | 28.7590         |
| 0.082            | 23.6396                | 0.073      | 23.8574         | 0.080      | 23.8606         | -0.283     | 28.5955         | -0.392     | 28.7647         |
| 0.078            | 23.6448                | 0.086      | 23.8590         | 0.086      | 23.8622         | -0.263     | 28.5999         | -0.393     | 28.7672         |
| 0.081            | 23.6488                | 0.084      | 23.8606         | 0.067      | 23.8637         | -0.252     | 28.6022         | -0.386     | 28.7698         |
| 0.065            | 23.6527                | 0.086      | 23.8622         | 0.065      | 23.8653         | -0.241     | 28.6045         | -0.378     | 28.7723         |
| -0.017           | 23.6620                | 0.067      | 23.8637         | 0.059      | 23.8669         | -0.216     | 28.6068         | -0.369     | 28.7749         |
| -0.050           | 23.6660                | 0.065      | 23.8653         | 0.037      | 23.8685         | -0.211     | 28.6091         | -0.363     | 28.7774         |
| -0.121           | 23.6732                | 0.059      | 23.8669         | 0.009      | 23.8701         | -0.181     | 28.6114         | -0.360     | 28.7800         |
| -0.157           | 23.6772                | 0.037      | 23.8685         | -0.002     | 23.8733         | -0.151     | 28.6160         | -0.348     | 28.7825         |
| -0.189           | 23.6811                | 0.009      | 23.8/01         | -0.018     | 25.8/49         | -0.139     | 28.6183         | -0.339     | 28.7851         |
| -0.228           | 23.08/3                | -0.002     | 23.8/33         | -0.044     | 23.8781         | -0.114     | 28.0200         | -0.339     | 28.7870         |
| -0.238           | 23.0913                | -0.018     | 23.0/49         | -0.038     | 23.0701         | -0.091     | 20.0229         | _0.337     | 20.1902         |
| -0.201           | 23.6993                | _0.044     | 23.8781         | _0.007     | 23 8813         | -0.002     | 28.6274         | _0.327     | 28 7952         |
| -0.311           | 23.7032                | -0.067     | 23.8797         | -0.107     | 23.8829         | -0.029     | 28.6297         | -0.300     | 28.7978         |
| -0.326           | 23.7072                | -0.090     | 23.8813         | -0.112     | 23.8844         | 0.002      | 28.6321         | -0.288     | 28.8003         |
| -0.338           | 23.7112                | -0.107     | 23.8829         | -0.129     | 23.8860         | 0.012      | 28.6345         | -0.282     | 28.8029         |
| -0.353           | 23.7152                | -0.112     | 23.8844         | -0.143     | 23.8876         | 0.039      | 28.6370         | -0.276     | 28.8054         |
| -0.364           | 23.7191                | -0.129     | 23.8860         | -0.156     | 23.8892         | 0.054      | 28.6396         |            |                 |
| -0.374           | 23.7231                | -0.143     | 23.8876         | -0.181     | 23.8908         | 0.063      | 28.6421         |            |                 |

Table continued on following pages

| Table 1. | V573 Peg | observations, | $\Delta V, \Delta R_{c}$ | , and $\Delta I_{c}$ , | variable star | minus | comparison : | star, cont. |
|----------|----------|---------------|--------------------------|------------------------|---------------|-------|--------------|-------------|
|----------|----------|---------------|--------------------------|------------------------|---------------|-------|--------------|-------------|

| $\Delta R_c$     | HJD<br>2458000+    | $\Delta R_c$     | HJD<br>2458000+ | $\Delta R_c$     | HJD<br>2458000+    | $\Delta R_c$     | HJD<br>2458000+ | $\Delta R_c$     | HJD<br>2458000+    |
|------------------|--------------------|------------------|-----------------|------------------|--------------------|------------------|-----------------|------------------|--------------------|
| -0.248           | 22.5129            | -0.141           | 23.6921         | 0.049            | 23.8783            | 0.132            | 28.6349         | -0.148           | 28,8085            |
| -0.222           | 22.5195            | -0.160           | 23.6960         | 0.041            | 23.8799            | 0.157            | 28.6375         | -0.131           | 28.8110            |
| -0.219           | 22.5256            | -0.179           | 23.7000         | 0.016            | 23.8815            | 0.165            | 28.6400         | -0.116           | 28.8135            |
| -0.210           | 22.5292            | -0.193           | 23.7040         | 0.007            | 23.8831            | 0.180            | 28.6426         | -0.098           | 28.8161            |
| -0.190<br>-0.173 | 22.5327            | -0.209<br>-0.220 | 23.7080         | -0.020<br>-0.020 | 23.8863            | 0.185            | 28.6477         | -0.087           | 28.8180            |
| -0.162           | 22.5431            | -0.229           | 23.7159         | -0.029           | 23.8879            | 0.181            | 28.6502         | -0.044           | 28.8237            |
| -0.143           | 22.5464            | -0.242           | 23.7199         | -0.045           | 23.8895            | 0.181            | 28.6528         | -0.018           | 28.8263            |
| -0.110           | 22.5514            | -0.256           | 23.7239         | -0.054           | 23.8911            | 0.189            | 28.6553         | 0.009            | 28.8288            |
| -0.096           | 22.5547            | -0.256           | 23.7278         | -0.173           | 28.4993            | 0.184            | 28.6579         | 0.029            | 28.8314            |
| -0.030<br>-0.021 | 22.5579            | -0.265           | 23.7318         | -0.176<br>-0.184 | 28.5010            | 0.176            | 28.0004         | 0.034            | 28.8365            |
| 0.021            | 22.5678            | -0.265           | 23.7438         | -0.188           | 28.5062            | 0.148            | 28.6655         | 0.108            | 28.8390            |
| 0.055            | 22.5720            | -0.267           | 23.7477         | -0.196           | 28.5085            | 0.121            | 28.6681         | 0.137            | 28.8415            |
| 0.120            | 22.5779            | -0.262           | 23.7517         | -0.200           | 28.5108            | 0.104            | 28.6706         | 0.148            | 28.8441            |
| 0.145            | 22.5821            | -0.259           | 23.7557         | -0.214           | 28.5131            | 0.074            | 28.6732         | 0.171            | 28.8466            |
| 0.179            | 22.3803            | -0.234           | 23.7397         | -0.222           | 28.5154            | 0.030            | 28.6783         | 0.170            | 28.8492            |
| 0.187            | 22.5965            | -0.151           | 23.7972         | -0.233           | 28.5200            | 0.014            | 28.6808         | 0.187            | 28.8543            |
| 0.189            | 22.6007            | -0.145           | 23.7988         | -0.238           | 28.5223            | -0.017           | 28.6834         | 0.192            | 28.8568            |
| 0.188            | 22.6060            | -0.130           | 23.8015         | -0.245           | 28.5246            | -0.040           | 28.6859         | 0.179            | 28.8594            |
| 0.185            | 22.6102            | -0.117           | 23.8031         | -0.253           | 28.5269            | -0.061           | 28.6885         | 0.188            | 28.8619            |
| 0.153            | 22.6144            | -0.112<br>-0.103 | 23.8047         | -0.251           | 28.5292            | -0.081           | 28.6910         | 0.182            | 28.8645            |
| 0.061            | 22.6236            | -0.085           | 23.8079         | -0.266           | 28.5337            | -0.116           | 28.6964         | 0.187            | 28.8696            |
| 0.027            | 22.6278            | -0.081           | 23.8095         | -0.266           | 28.5360            | -0.133           | 28.6990         | 0.181            | 28.8721            |
| -0.015           | 22.6331            | -0.056           | 23.8111         | -0.271           | 28.5383            | -0.149           | 28.7015         | 0.172            | 28.8746            |
| -0.058           | 22.6373            | -0.042           | 23.8127         | -0.269           | 28.5406            | -0.159           | 28.7041         | 0.149            | 28.8772            |
| -0.116           | 22.6501            | -0.042           | 23.8143         | -0.272           | 28.5429            | -0.172           | 28.7066         | 0.121            | 28.8797            |
| -0.140<br>-0.205 | 22.0343            | -0.014<br>-0.015 | 23.8138         | -0.276<br>-0.274 | 28.5452            | -0.184<br>-0.194 | 28.7092         | 0.093            | 28.8848            |
| -0.217           | 22.6774            | 0.004            | 23.8190         | -0.275           | 28.5498            | -0.208           | 28.7143         | 0.053            | 28.8874            |
| -0.243           | 22.6816            | 0.029            | 23.8206         | -0.273           | 28.5521            | -0.211           | 28.7168         | 0.023            | 28.8899            |
| -0.243           | 22.6883            | 0.041            | 23.8222         | -0.278           | 28.5544            | -0.219           | 28.7194         | 0.001            | 28.8925            |
| -0.261           | 22.6930            | 0.056            | 23.8238         | -0.267           | 28.5567            | -0.227           | 28.7219         | -0.028           | 28.8950            |
| -0.270           | 22.6988            | 0.075            | 23.8256         | -0.258           | 28.5590            | -0.235           | 28.7244         | -0.045           | 28.8976            |
| -0.270<br>-0.258 | 22.7072            | 0.101            | 23.8288         | -0.259           | 28.5636            | -0.245           | 28.7295         | -0.217           | 30.6022            |
| -0.260           | 22.7114            | 0.123            | 23.8304         | -0.261           | 28.5659            | -0.252           | 28.7321         | -0.229           | 30.6048            |
| -0.258           | 22.7156            | 0.130            | 23.8321         | -0.257           | 28.5682            | -0.258           | 28.7346         | -0.234           | 30.6073            |
| -0.250           | 22.7198            | 0.148            | 23.8337         | -0.253           | 28.5704            | -0.263           | 28.7372         | -0.237           | 30.6099            |
| -0.249           | 23.5564            | 0.173            | 23.8353         | -0.242           | 28.5727            | -0.271           | 28.7397         | -0.248           | 30.6124            |
| -0.240<br>-0.230 | 23.5644            | 0.108            | 23.8385         | -0.242<br>-0.232 | 28.5730            | -0.278<br>-0.279 | 28.7425         | -0.233<br>-0.259 | 30.6175            |
| -0.218           | 23.5693            | 0.181            | 23.8401         | -0.230           | 28.5796            | -0.281           | 28.7473         | -0.259           | 30.6200            |
| -0.204           | 23.5732            | 0.185            | 23.8417         | -0.220           | 28.5819            | -0.279           | 28.7499         | -0.263           | 30.6225            |
| -0.189           | 23.5772            | 0.197            | 23.8433         | -0.220           | 28.5842            | -0.277           | 28.7524         | -0.267           | 30.6251            |
| -0.174           | 23.5822            | 0.180            | 23.8449         | -0.209           | 28.5865            | -0.280           | 28.7550         | -0.271           | 30.6276            |
| -0.153<br>-0.143 | 23.5802            | 0.199            | 23.8405         | -0.204           | 28.3888            | -0.278<br>-0.279 | 28.7575         | -0.208<br>-0.273 | 30.6302            |
| -0.119           | 23.5944            | 0.200            | 23.8497         | -0.177           | 28.5934            | -0.273           | 28.7626         | -0.273           | 30.6353            |
| 0.050            | 23.6155            | 0.193            | 23.8513         | -0.169           | 28.5957            | -0.271           | 28.7652         | -0.270           | 30.6379            |
| 0.084            | 23.6195            | 0.198            | 23.8529         | -0.155           | 28.5980            | -0.272           | 28.7677         | -0.276           | 30.6404            |
| 0.121            | 23.6235            | 0.180            | 23.8544         | -0.148           | 28.6003            | -0.266           | 28.7703         | -0.269           | 30.6429            |
| 0.165            | 23.6285            | 0.183            | 23.8560         | -0.131           | 28.6026            | -0.265           | 28.7728         | -0.270           | 30.6455            |
| 0.180            | 23.6364            | 0.194            | 23.8592         | -0.104           | 28.6072            | -0.248           | 28.7779         | -0.264           | 30.6506            |
| 0.191            | 23.6416            | 0.202            | 23.8608         | -0.081           | 28.6095            | -0.243           | 28.7804         | -0.264           | 30.6531            |
| 0.187            | 23.6455            | 0.175            | 23.8624         | -0.067           | 28.6118            | -0.236           | 28.7830         | -0.254           | 30.6556            |
| 0.186            | 23.6495            | 0.183            | 23.8640         | -0.059           | 28.6141            | -0.226           | 28.7855         | -0.251           | 30.6582            |
| 0.157            | 23.6548            | 0.150            | 23.8656         | -0.040           | 28.6164            | -0.222           | 28.7881         | -0.240           | 30.6607            |
| 0.128            | ∠3.0388<br>23.6628 | 0.154            | 23.8072         | -0.018           | 20.018/<br>28.6210 | -0.214           | 20.7900         | -0.235           | 30.0033<br>30.6658 |
| 0.012            | 23.6699            | 0.120            | 23.8704         | 0.019            | 28.6233            | -0.198           | 28.7957         | -0.222           | 30.6683            |
| -0.016           | 23.6739            | 0.110            | 23.8720         | 0.048            | 28.6256            | -0.189           | 28.7983         | -0.210           | 30.6709            |
| -0.048           | 23.6779            | 0.074            | 23.8736         | 0.070            | 28.6279            | -0.176           | 28.8008         |                  |                    |
| -0.096           | 23.6841            | 0.085            | 23.8752         | 0.098            | 28.6302            | -0.169           | 28.8034         |                  |                    |
| -0.118           | 23.0881            | 0.048            | 23.8/6/         | 0.112            | 28.0325            | -0.155           | 28.8059         | I                |                    |

Table 1. V573 Peg observations,  $\Delta V$ ,  $\Delta R_c$ , and  $\Delta I_c$ , variable star minus comparison star, cont.

| $\Delta I_c$     | HJD<br>2458000+    | $\Delta I_c$ | HJD<br>2458000+ | $\Delta I_c$     | HJD<br>2458000+    | $\Delta I_c$     | HJD<br>2458000+    | $\Delta I_c$ | HJD<br>2458000+ |
|------------------|--------------------|--------------|-----------------|------------------|--------------------|------------------|--------------------|--------------|-----------------|
| -0.124           | 22 5137            | -0 133       | 23 7208         | 0.064            | 23 8913            | 0 296            | 28 6507            | 0.042        | 28 8191         |
| -0.113           | 22.5204            | -0.133       | 23.7248         | -0.048           | 28.4997            | 0.296            | 28.6532            | 0.053        | 28.8216         |
| -0.096           | 22.5265            | -0.137       | 23.7288         | -0.062           | 28.5020            | 0.293            | 28.6558            | 0.078        | 28.8242         |
| -0.089           | 22.5300            | -0.148       | 23.7328         | -0.058           | 28.5043            | 0.289            | 28.6583            | 0.094        | 28.8267         |
| -0.074           | 22.5336            | -0.151       | 23.7367         | -0.070           | 28.5066            | 0.276            | 28.6609            | 0.119        | 28.8293         |
| -0.046           | 22.5406            | -0.154       | 23.7407         | -0.079           | 28.5089            | 0.278            | 28.6634            | 0.146        | 28.8318         |
| -0.030<br>-0.005 | 22.3439            | -0.155       | 23.7447         | -0.090           | 28.5112            | 0.203            | 28.0000            | 0.172        | 28.8369         |
| 0.005            | 22.5522            | -0.148       | 23.7527         | -0.100           | 28.5158            | 0.209            | 28.6711            | 0.202        | 28.8369         |
| 0.050            | 22.5555            | -0.146       | 23.7566         | -0.107           | 28.5181            | 0.189            | 28.6736            | 0.230        | 28.8395         |
| 0.061            | 22.5588            | -0.144       | 23.7606         | -0.109           | 28.5204            | 0.166            | 28.6762            | 0.259        | 28.8420         |
| 0.085            | 22.5646            | 0.011        | 23.8049         | -0.116           | 28.5227            | 0.138            | 28.6787            | 0.275        | 28.8446         |
| 0.135            | 22.5688            | 0.022        | 23.8065         | -0.114           | 28.5250            | 0.116            | 28.6813            | 0.287        | 28.8471         |
| 0.1/4            | 22.5730            | 0.034        | 23.8081         | -0.125           | 28.52/3            | 0.098            | 28.6838            | 0.304        | 28.8497         |
| 0.248            | 22.5789            | 0.033        | 23.8097         | -0.132<br>-0.132 | 28.3290            | 0.074            | 28.0804            | 0.302        | 28.8522         |
| 0.315            | 22.5873            | 0.074        | 23.8129         | -0.148           | 28.5342            | 0.032            | 28.6915            | 0.303        | 28.8573         |
| 0.321            | 22.5933            | 0.071        | 23.8145         | -0.129           | 28.5364            | 0.013            | 28.6943            | 0.304        | 28.8598         |
| 0.308            | 22.5975            | 0.090        | 23.8161         | -0.152           | 28.5387            | -0.004           | 28.6969            | 0.306        | 28.8624         |
| 0.313            | 22.6017            | 0.097        | 23.8177         | -0.152           | 28.5410            | -0.021           | 28.6994            | 0.297        | 28.8649         |
| 0.314            | 22.6071            | 0.123        | 23.8193         | -0.151           | 28.5433            | -0.030           | 28.7020            | 0.300        | 28.8675         |
| 0.304            | 22.6113            | 0.135        | 23.8209         | -0.149           | 28.5456            | -0.042           | 28.7045            | 0.304        | 28.8700         |
| 0.277            | 22.0135            | 0.160        | 23.8223         | -0.149           | 28.3479            | -0.032           | 28.7071            | 0.291        | 28.8720         |
| 0.190            | 22.6247            | 0.186        | 23.8258         | -0.152           | 28.5525            | -0.077           | 28.7122            | 0.249        | 28.8777         |
| 0.150            | 22.6289            | 0.209        | 23.8274         | -0.148           | 28.5548            | -0.083           | 28.7147            | 0.227        | 28.8802         |
| 0.104            | 22.6341            | 0.227        | 23.8290         | -0.152           | 28.5571            | -0.091           | 28.7173            | 0.210        | 28.8827         |
| 0.065            | 22.6383            | 0.225        | 23.8306         | -0.156           | 28.5594            | -0.103           | 28.7198            | 0.185        | 28.8853         |
| -0.115           | 22.6826            | 0.259        | 23.8324         | -0.149           | 28.5617            | -0.111           | 28.7224            | 0.161        | 28.8878         |
| -0.13/           | 22.6894            | 0.262        | 23.8340         | -0.147           | 28.5640            | -0.119           | 28.7249            | 0.137        | 28.8904         |
| -0.143<br>-0.137 | 22.7124            | 0.275        | 23.8350         | -0.145           | 28.5005            | -0.122<br>-0.132 | 28.7275            | 0.080        | 28.8929         |
| -0.113           | 23.5574            | 0.303        | 23.8388         | -0.129           | 28.5709            | -0.133           | 28.7325            | 0.074        | 28.8980         |
| -0.120           | 23.5614            | 0.295        | 23.8403         | -0.134           | 28.5731            | -0.143           | 28.7351            | 0.034        | 28.9006         |
| -0.112           | 23.5654            | 0.305        | 23.8419         | -0.124           | 28.5754            | -0.145           | 28.7376            | -0.098       | 30.6027         |
| -0.096           | 23.5702            | 0.319        | 23.8435         | -0.116           | 28.5777            | -0.144           | 28.7402            | -0.110       | 30.6052         |
| -0.074           | 23.5742            | 0.276        | 23.8451         | -0.110           | 28.5800            | -0.150           | 28.7427            | -0.114       | 30.6078         |
| -0.039           | 23.5782            | 0.302        | 23.8407         | -0.099           | 28.5846            | -0.153           | 28.7433            | -0.121       | 30.6103         |
| -0.030           | 23.5871            | 0.291        | 23.8499         | -0.097           | 28.5869            | -0.160           | 28.7504            | -0.127       | 30.6154         |
| -0.025           | 23.5953            | 0.299        | 23.8515         | -0.077           | 28.5892            | -0.160           | 28.7529            | -0.135       | 30.6179         |
| 0.169            | 23.6165            | 0.318        | 23.8531         | -0.065           | 28.5915            | -0.163           | 28.7555            | -0.139       | 30.6205         |
| 0.210            | 23.6205            | 0.314        | 23.8547         | -0.052           | 28.5938            | -0.157           | 28.7580            | -0.144       | 30.6230         |
| 0.243            | 23.6244            | 0.295        | 23.8563         | -0.050           | 28.5961            | -0.152           | 28.7605            | -0.144       | 30.6256         |
| 0.288            | 23.6294            | 0.311        | 23.8579         | -0.037           | 28.5984            | -0.152           | 28.7631            | -0.14/       | 30.6281         |
| 0.301            | 23.0334            | 0.298        | 23.8595         | -0.034           | 28.6030            | -0.132<br>-0.150 | 28.7630            | -0.151       | 30.6332         |
| 0.307            | 23.6425            | 0.284        | 23.8627         | 0.011            | 28.6076            | -0.149           | 28.7707            | -0.148       | 30.6358         |
| 0.302            | 23.6465            | 0.265        | 23.8642         | 0.026            | 28.6099            | -0.146           | 28.7733            | -0.148       | 30.6383         |
| 0.290            | 23.6505            | 0.276        | 23.8658         | 0.046            | 28.6122            | -0.139           | 28.7758            | -0.150       | 30.6409         |
| 0.264            | 23.6557            | 0.272        | 23.8674         | 0.066            | 28.6145            | -0.131           | 28.7784            | -0.153       | 30.6434         |
| 0.233            | 23.6597            | 0.261        | 23.8690         | 0.085            | 28.6168            | -0.119           | 28.7809            | -0.141       | 30.6459         |
| 0.198            | 23.6637            | 0.219        | 23.8706         | 0.104            | 28.6191            | -0.120           | 28.7835            | -0.137       | 30.6485         |
| 0.127            | 23.6749            | 0.195        | 23.8738         | 0.138            | 28.6237            | -0.099           | 28.7886            | -0.140       | 30.6536         |
| 0.056            | 23.6788            | 0.193        | 23.8754         | 0.168            | 28.6260            | -0.099           | 28.7911            | -0.128       | 30.6561         |
| 0.011            | 23.6850            | 0.168        | 23.8770         | 0.181            | 28.6283            | -0.089           | 28.7936            | -0.129       | 30.6587         |
| -0.017           | 23.6890            | 0.159        | 23.8786         | 0.211            | 28.6306            | -0.079           | 28.7962            | -0.115       | 30.6612         |
| -0.036           | 23.6930            | 0.138        | 23.8802         | 0.233            | 28.6329            | -0.070           | 28.7987            | -0.108       | 30.6637         |
| -0.053           | 23.6970            | 0.124        | 23.8818         | 0.252            | 28.6354            | -0.058           | 28.8013            | -0.100       | 30.6663         |
| -0.069           | 23.7010            | 0.115        | 25.8853         | 0.267            | 28.6380            | -0.050           | 28.8038            | -0.104       | 30.6688         |
| -0.085           | 23.7049<br>23.7089 | 0.095        | 23.8865         | 0.281            | ∠0.0403<br>28.6430 | -0.043           | ∠0.8004<br>28.8115 | -0.092       | 30.0/13         |
| -0.114           | 23.7129            | 0.079        | 23.8881         | 0.288            | 28.6456            | 0.002            | 28.8140            |              |                 |
| -0.120           | 23.7169            | 0.058        | 23.8897         | 0.294            | 28.6481            | 0.024            | 28.8166            |              |                 |

| Tab | le 2. | Information | on | the | stars | used | in | this | study. |
|-----|-------|-------------|----|-----|-------|------|----|------|--------|
|-----|-------|-------------|----|-----|-------|------|----|------|--------|

|                         | Star                        | Name                                                                                                      | R.A. (2000)<br>h m s  | Dec. (2000)<br>° ' "      | V                   | J–K                 |
|-------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------|---------------------------|---------------------|---------------------|
|                         | V                           | V573 Peg<br>GSC 2751-1007<br>SAVS 231034+314253<br>CRTS J231034.2+314254<br>NSVS 9014625<br>3UC167-320333 | 23 10 34.2395         | 31 42 53.7441             | 12.59 <sup>2</sup>  | $0.314 \pm 0.049^2$ |
|                         | С                           | GSC 2751-01803<br>3UC244-290293                                                                           | 23 10 32.1420         | 31 46 54.8211             | 12.55 <sup>2</sup>  | 0.48 <sup>2</sup>   |
|                         | K (Check)                   | GSC 2751-0129<br>3UC167-320353                                                                            | 23 10 34.2599         | 31 47 10.500 <sup>3</sup> | 11.263 <sup>2</sup> | $0.277 \pm 0.046^2$ |
| <sup>1</sup> UCAC-3 (US | NO 2012). <sup>2</sup> 2Mas | s (Skrutskie et al. 2006). <sup>3</sup> TYCHO (H                                                          | øg, E., et al. 2000). |                           |                     |                     |

Table 3. O–C Residuals for V573 Peg.

|    | Epoch      | Cycles  | Linear    | Quadratic | Reference            |
|----|------------|---------|-----------|-----------|----------------------|
|    | 2400000+   | -       | Residuals | Residuals | -                    |
| 1  | 52885.2469 | -9561.0 | -0.0060   | 0.0022    | VSX                  |
| 2  | 53300.4014 | -8566.5 | -0.0057   | -0.0008   | Gürol et al. 2007    |
| 3  | 53301.2365 | -8564.5 | -0.0055   | -0.0007   | Gürol et al. 2007    |
| 4  | 53301.4443 | -8564.0 | -0.0064   | -0.0016   | Gürol et al. 2007    |
| 5  | 54452.3640 | -5807.0 | 0.0030    | 0.0015    | Paschke 2009         |
| 6  | 54723.7050 | -5157.0 | 0.0014    | -0.0011   | Nelson 2008          |
| 7  | 55445.4778 | -3428.0 | 0.0028    | -0.0010   | Gökay et al. 2012    |
| 8  | 55448.4001 | -3421.0 | 0.0029    | -0.0008   | Gökay et al. 2012    |
| 9  | 55449.4447 | -3418.5 | 0.0039    | 0.0001    | Gökay et al. 2012    |
| 10 | 55764.4106 | -2664.0 | 0.0036    | -0.0002   | Demircan et al. 2012 |
| 11 | 55778.3963 | -2630.5 | 0.0047    | 0.0009    | Demircan et al. 2012 |
| 12 | 55781.5255 | -2623.0 | 0.0030    | -0.0007   | Demircan et al. 2012 |
| 13 | 55783.4059 | -2618.5 | 0.0049    | 0.0011    | Demircan et al. 2012 |
| 14 | 55790.5024 | -2601.5 | 0.0048    | 0.0010    | Demircan et al. 2012 |
| 15 | 55799.2681 | -2580.5 | 0.0040    | 0.0002    | Demircan et al. 2012 |
| 16 | 55799.4769 | -2580.0 | 0.0041    | 0.0003    | Demircan et al. 2012 |
| 17 | 56539.4090 | -807.5  | 0.0057    | 0.0031    | Hübscher 2014        |
| 18 | 56539.6127 | -807.0  | 0.0007    | -0.0019   | Hübscher 2014        |
| 19 | 56876.4938 | 0.0     | -0.0006   | -0.0020   | Hübscher 2014        |
| 20 | 58022.5991 | 2745.5  | -0.0048   | 0.0003    | This paper           |
| 21 | 58023.6420 | 2748.0  | -0.0056   | -0.0005   | This paper           |
| 22 | 58023.8510 | 2748.5  | -0.0053   | -0.0002   | This paper           |
| 23 | 58028.6522 | 2760.0  | -0.0047   | 0.0004    | This paper           |
| 24 | 58028.8608 | 2760.5  | -0.0049   | 0.0002    | This paper           |

| Table 4. Averaged | light curve    | characteristics  | of V573 Peg. |
|-------------------|----------------|------------------|--------------|
| raore             | ingine etai re | •110100001100100 | 01 1010 108. |

| Filter | Phase 1           | Magnitude<br>Min. I  | Phase   | Magnitude<br>Max. I  |
|--------|-------------------|----------------------|---------|----------------------|
|        | 0.0               |                      | 0.25    |                      |
| V      | 0.                | $.075 \pm 0.002$     |         | $-0.393 \pm 0.007$   |
| Rc     | 0.                | $184 \pm 0.005$      |         | $-0.274 \pm 0.007$   |
| Ic     | 0.                | $298 \pm 0.006$      |         | $-0.157 \pm 0.004$   |
| Filter | Phase 1           | Magnitude<br>Min. II | Phase   | Magnitude<br>Max. II |
|        | 0.5               |                      | 0.75    |                      |
| V      | 0.                | $.080 \pm 0.009$     |         | $-0.392 \pm 0.006$   |
| Rc     | 0.                | $192 \pm 0.007$      |         | $-0.271 \pm 0.006$   |
| Ic     | 0.                | $.303 \pm 0.009$     |         | $-0.153 \pm 0.018$   |
| Filter | Min. I – Max. I   | Max. I – M           | 1ax. II | Min. I – Min. II     |
| V      | $0.468 \pm 0.009$ | $-0.002 \pm$         | 0.013   | $-0.005 \pm 0.011$   |
| Rc     | $0.458\pm0.011$   | $-0.004 \pm$         | 0.013   | $-0.008 \pm 0.011$   |
| Ic     | $0.455\pm0.010$   | $-0.004 \pm$         | 0.022   | $-0.005 \pm 0.015$   |
| Filter | Max. II – Max     | .I F                 | ïilter  | Min. II – Max. I     |
| V      | $0.002 \pm 0.012$ | 3                    | V       | $0.472 \pm 0.016$    |
| Rc     | $0.004 \pm 0.012$ | 3                    | Rc      | $0.463 \pm 0.013$    |
| Ic     | $0.004 \pm 0.022$ | 2                    | Ic      | $0.456\pm0.013$      |

Calculated from the light curve data given in the reference. The quadratic ephemeris yields a  $\dot{P} = -4.79 \times 10^{-7}$  d/yr.

| Table 5. $VR_{c}I_{c}$ solution | n parameters for | V573 Peg. |
|---------------------------------|------------------|-----------|
|---------------------------------|------------------|-----------|

| Parameter                       | Overcontact Solution        | Parameter                                 | Overcontact Solution                    |
|---------------------------------|-----------------------------|-------------------------------------------|-----------------------------------------|
| $l_{v_2} l_{p_0} l_{l_0} (nm)$  | 440, 550, 640, 790          | $q(m_{2}/m_{1})$                          | $0.2629 \pm 0.0003$                     |
| $x_{holl 2}$ , $y_{holl 2}$     | 0.640 0 .640, 0.232, 0.232  | Fill-outs: $F_1 = F_2$ (%)                | $24.5 \pm 1.0$                          |
| $X_{112,212}$ , $Y_{112,21}$ C  | 0.569, 0.569, 0.271, 0.271  | $L_{1}/(L_{1}+L_{2})_{L_{2}}$             | $0.7554 \pm 0.0003$                     |
| $X_{1Pc,2Pc}$ , $Y_{1Pc,2Pc}$   | 0.652, 0.652, 0. 278, 0.278 | $L_{1}^{1}/(L_{1}^{1}+L_{2}^{2})_{R_{c}}$ | $0.7531 \pm 0.0003$                     |
| $X_{1V2V}$ , $Y_{1V2V}$         | 0.725, 0.725, 0.266, 0. 266 | $L_{1}^{1}/(L_{1}^{1}+L_{2}^{2})_{V}$     | $0.7023 \pm 0.0003$                     |
| g <sub>1</sub> , g <sub>2</sub> | 0.320, 0.320                | JD_(days)                                 | $2458028.65131 \pm 0.00006$             |
| A1, A <sub>2</sub>              | 0.5, 0.5                    | Period (days)                             | $0.417454 \pm 0.000007$                 |
| Inclination (°)                 | $80.43 \pm 0.06$            | $r_1, r_2$ (pole)                         | $0.4751 \pm 0.0003, 0.2613 \pm 0.0006$  |
| T., T. (K)                      | $6250, 6379 \pm 1$          | $r_1, r_2$ (side)                         | $0.5152 \pm 0.0005, 0.2733 \pm 0.0008$  |
| $\Omega_1 = \Omega_2$ pot       | $2.3421 \pm 0.0005$         | $r_1, r_2$ (back)                         | $0.5426 \pm 0.0006,  0.3146 \pm 0.0016$ |