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Abstract

A computer program is used to illustrate several qualitative
features of chaotic behavior in a non-linear third-order
system: a) The properties of the system depend strongly on
the values assigned to the adjustable parameters; b) In the
chaotic domain, the trajectory of the system is very
sensitive to the starting point, which is the bad news, as
it means 1long-range prediction is impossible; <¢) Simple
systems can display very complex behavior, which is the good
news, as it implies that irregular variables may be
explainable by simple physics.

* % % * %

The study of chaos has recently become a fad in many areas of
science and technology. It is not really a new area of physics, but it
has offered many new insights into the behavior of physics systems. I
think the study of chaos may be viewed as an experimental geometry, or
as the application of geometry to the behavioral patterns of physical
and chemical systems. It is a delight to the mathematically minded,
but many physicists are not quite sure what to make of it. I would
like very briefly to describe how I see it and to explain why it seems
to be bringing bad news to weather forecasters and good news to those
of us who study variable stars.

First, the bad news. Today’s rain was not forecast 5 days ago,
and the news from chaos is that it could not have been forecast 5 days
ago. This is not merely a limitation of our computer programs or our
data. There 1is an inexorable 1limit to the possible length of an
accurate forecast. It appears to be about 4 or 5 days, if you are not
too fussy, and much less 1f you require high precision. Long-range,
and rather vague, statistical forecasting up to several months remains
possible. But the kind of forecasts that help us plan picnics are
limited by the chaotic nature of the atmosphere.

This situation can be summarized in the first tenet of chaos:
The detailed course of events is very sensitive to the starting point.

This is the reason a flipped coin or a palir of tossed dice can
give the appearance of randomness. The outcome of a toss depends
crucially on the immeasurable and uncontrollable details of their
bounce on the table. (The key feature of the dice is their sharp
corners. A spherical ball shows no such behavior when it bounces from
a flat table.)

In the same way, the weather in a few days is extremely sensitive
to the state of the air today - so sensitive that we cannot hope to
collect sufficient data.

Now let me state the good news and then give an example of the
message chaos may bring to the study of variable stars.

Simple systems can show complicated behavior.
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The bouncing of dice is a complicated behavior, but the system is

merely a pair of cubes. To show why this is good news, I will borrow
from a recent paper on the light variations of a white dwarf star
(Goupil et al. 1988). The authors of that paper suggest that the star

is behaving chaotically, and I would like to describe what they mean by
this.

They adapted a relatively simple equation that was constructed to
imitate the behavior of a star, and they find that it behaves in a very

complicated way. The equation is simple, but its behavior can be
complex if the parameters are chosen correctly. The implication is
that if we see a complex pattern of behavior, we do not need to look
for a complicated explanation. That is the good news from chaos. The

complicated behavior of semiregular and irregular variable stars may be
understandable in simple terms.

I have put their equation into my Apple Macintosh computer and
have generated a few examples. Here is their original equation. It is
a non-linear 3rd-order differential equation for R, the radius of a
star as a function of time:

R’’’ + KR’/ + R’ + KmR(1+bR). (1)

Each prime indicates one differentiation with respect to time, and
the letters k, b, and m stand for adjustable constants, or parameters,
of the system. The equation is completely deterministic and it does
not involve random numbers. The behavior of the solution, that is the
curve of R against time, depends on the numbers assigned to the
parameters, much the same way the behavior of a star depends on its
mass and age and chemical composition. But the analogy must not be
taken too literally. This equation is not a good representative of an
actual star. It is much too crude, but its behavior is similar, and
for that reason it can give us some insights. (Another tenet of chaos,
that I can only mention in passing, is that there are universal
properties in the behavior of physical systems, so we can hope to
transfer ideas from one model to another. This is perhaps the best
news of all.)

I rewrote their equation in terms of three variables R, V, and F
and obtained the following three equations:

o
R’ =V, V/ = F, F/ = -kF - V - kmR + kmbRZ. (2)

These are the equations I put into my computer. We need not worry
about the interpretation of the R, V, and F. Just suppose they are
some properties of a star. All I really care about is showing the way
their behavior can become chaotic.

To do this, I will use two types of plots. The first (upper part
of Figure 1) is a familiar strip chart recording and it looks very much
like a conventional light curve, where the data are plotted as
functions of time. (I have plotted only the two variables, R and V.)
But if we want to follow the long-~term history of the star, this plot
runs off the screen, so I will use the type shown in the lower part of
Figure 1. Here I use R and V to define the x and y coordinates, and R
is plotted against V, rather than against time. As the time goes on,
the star moves along a track, and the track can take a variety of
shapes.

I will illustrate four types of behavior obtained by adjusting the
numerical values of the parameters.

1) Regqular oscillation: (m = -1, k = 0, b = 0)

In this case (Figure 1, upper), R and V look like sine and cosine
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curves when plotted against time. They are” very regular and highly
predictable into the distant future. 1In order to compress the data, we
plot R against V in the lower part of the figure. Now the system
traces out a circle, and this is a much more compact way to represent
the behavior.

2) Damping toward a stationary point: (m = 0, k = 0.5, b = -0.5).

In this case (Figure 2) the motion dies out very quickly,
imitating a star, like the sun, that is stable against global
oscillations. If we start it from an arbitrary position, it tends to
become motionless and then stay that way. Nothing very new thus far.
This just imitates a swinging pendulum with some friction.

3) Period-doubling: (m = -1.65, k = 0.5, b = -0.5).

For the rest of the figures, we will keep the same values of k and
b, and we only change m.

In Figure 3, the behavior is a little more interesting and the
difference comes from the squared term in the equation for F’. ‘Th}s
term is no longer multiplied by zero, so it can do its thing. (This is
like putting the sharp corners onto the dice we were tossing a while
back.) On the R vs. V plane, the system now follows a curve that has
two loops. The result is an alternation of deep and shallow minima,
much like the RV Tauri stars. Its period is twice the time required
for a single loop, so this is called period-doubling.

4) Chaos: (m = -2.0, k = 0.5, b = -0.5).

Now the system wanders all over the diagram (Figure 4) and has
become unpredictable. Two stars starting close together on such a
diagram will quickly wander apart. This is chaos, and the remarkable

feature is that we have used exactly the same equation.

There are two implications for variable stars. The first is_that
similar physics can explain a wide range of behavior, from highly
regular Cepheids to the semiregular and irregular variables. The

second 1is that the complicated behavior of some stars may be
understandable in terms of relatively simple equations.

This is the good news from chaos. It encourages us to look deeper
for the source of strange and irregular behavior, rather than
attributing it to mere "randomness."

For a fascinating layman’s historical introduction to chaocs, I
recommend James Gleick’s book (1988).
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Figure 1. Regular, periodic oscillations (m = -1.0, k = 0, b =_O).
The upper diagram shows the two variables, R and V, plotted against
time, and they behave as displaced sine curves. In the lower portion,
the values of R and V are plotted against each other. That is, each

point on the trajectory, represents the values of R and V at a
particular time. As time goes by, the system moves along the track, in
this case an oval.
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Figure 2. Damped oscillator (m = 0, k = 0.5, b = -0.5). When started
from an arbitrary position, the motions of the system quickly die out,
imitating pendulum with friction. This behavior is characteristic of

stars that are stable against global oscillations.
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Figure 3. Period-doubling (m = -1.65, k = 0.5, b = =0.5). The
trajectory follows a pair of loops (only approximately in the
particular calculation) showing alternating extremes. This was the

behavior described by Goupil et al. (1988) in the context of the white
dwarfs, and perhaps it also applies to RV Tauri stars.
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Figure 4. Chaotic behavior (m = -2.00, k = 0.5, b = -0.5). The systen
wanders apparently aimlessly and the curve shows intervals of relative
quiet. Does this imitate the Cepheids that have temporarily stopped
pulsating?
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